已知0<β<派/4<α<3派/4,且cos﹙派/4-α﹚=4/5,sin﹙3派+β﹚=5/13,求sin﹙α+β﹚的值
展开全部
把问题稍微转化一下就可以了,
由π/4<α<3π/4,可得:-π/2<α<0
又∵cos(π/4-α)=4/5 ∴sin(π/4-α)=-3/5
∵sin(3π+β)=5/13, ∴sinβ=-5/13; cosβ=12/13
∴sin(π/4+β)=sinπ/4cosβ+cosπ/4sinβ=7√2/26
cos(π/4+β)=cosπ/4cosβ-sinπ/4sinβ=17√2/26
∴sin(α+β)=-sin[(π/4-α)-(π/4+β)]=-[sin(π/4-α)cos(π/4+β)-cos(π/4-α)sin(π/4+β)]
=-(-3/5×17√2/26-4/5×7√2/26)=79√2/130
由π/4<α<3π/4,可得:-π/2<α<0
又∵cos(π/4-α)=4/5 ∴sin(π/4-α)=-3/5
∵sin(3π+β)=5/13, ∴sinβ=-5/13; cosβ=12/13
∴sin(π/4+β)=sinπ/4cosβ+cosπ/4sinβ=7√2/26
cos(π/4+β)=cosπ/4cosβ-sinπ/4sinβ=17√2/26
∴sin(α+β)=-sin[(π/4-α)-(π/4+β)]=-[sin(π/4-α)cos(π/4+β)-cos(π/4-α)sin(π/4+β)]
=-(-3/5×17√2/26-4/5×7√2/26)=79√2/130
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询