用c++语言将十个数排序

 我来答
alan19921201
2012-02-27
知道答主
回答量:20
采纳率:0%
帮助的人:27.4万
展开全部
C++排序算法全集
排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法对算法本身的速度要求很高。
而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将给出详细的说明。

对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。
我将按照算法的复杂度,从简单到难来分析算法。
第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。
第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种算法因为涉及树与堆的概念,所以这里不于讨论。
第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。
第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。由于是模板函数可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。
 
现在,让我们开始吧:
 
一、简单排序算法
由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。

1.冒泡法:
这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:
#include <iostream.h>

void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
{
 for(int j=Count-1;j>=i;j--)
 {
  if(pData[j]<pData[j-1])
  {
  iTemp = pData[j-1];
  pData[j-1] = pData[j];
  pData[j] = iTemp;
  }
 }
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
 cout<<data<<" ";
cout<<"\n";
}

倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次

其他:
第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次

上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。
写成公式就是1/2*(n-1)*n。
现在注意,我们给出O方法的定义:

若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没学好数学呀,对于编程数学是非常重要的!!!)

现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n) =O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。
再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的原因,我们通常都是通过循环次数来对比算法。

2.交换法:
交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
 for(int j=i+1;j<Count;j++)
 {
  if(pData[j]<pData)
  {
  iTemp = pData;
  pData = pData[j];
  pData[j] = iTemp;
  }
 }
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
 cout<<data<<" ";
cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次

其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次

从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。

3.选择法:
现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)
这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中
选择最小的与第二个交换,这样往复下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
 iTemp = pData;
 iPos = i;
 for(int j=i+1;j<Count;j++)
 {
  if(pData[j]<iTemp)
  {
  iTemp = pData[j];
  iPos = j;
  }
 }
 pData[iPos] = pData;
 pData = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
 cout<<data<<" ";
cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次

其他:
第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。
我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n
所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。

4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
 iTemp = pData;
 iPos = i-1;
 while((iPos>=0) && (iTemp<pData[iPos]))
 {
  pData[iPos+1] = pData[iPos];
  iPos--;
 }
 pData[iPos+1] = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
 cout<<data<<" ";
cout<<"\n";
}

倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次

其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次

上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是, 因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<=1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’而这里显然多了一些,所以我们浪费了时间。

最终,我个人认为,在简单排序算法中,选择法是最好的。

二、高级排序算法:
高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。
它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使用这个过程(最容易的方法——递归)。

1.快速排序:
#include <iostream.h>

void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中间值
do{
 while((pData<middle) && (i<right))//从左扫描大于中值的数
  i++;  
 while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
  j--;
 if(i<=j)//找到了一对值
 {
  //交换
  iTemp = pData;
  pData = pData[j];
  pData[j] = iTemp;
  i++;
  j--;
 }
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left<j),递归左半边
if(left<j)
 run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
 run(pData,i,right);
}

void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
 cout<<data<<" ";
cout<<"\n";
}

这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。

三、其他排序
1.双向冒泡:
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。
代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。
写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。
反正我认为这是一段有趣的代码,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
int iTemp;
int left = 1;
int right =Count -1;
int t;
do
{
 //正向的部分
 for(int i=right;i>=left;i--)
 {
  if(pData<pData[i-1])
  {
  iTemp = pData;
  pData = pData[i-1];
  pData[i-1] = iTemp;
  t = i;
  }
 }
 left = t+1;

 //反向的部分
 for(i=left;i<right+1;i++)
 {
  if(pData<pData[i-1])
  {
  iTemp = pData;
  pData = pData[i-1];
  pData[i-1] = iTemp;
  t = i;
  }
 }
 right = t-1;
}while(left<=right);
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
 cout<<data<<" ";
cout<<"\n";
}

2.SHELL排序
这个排序非常复杂,看了程序就知道了。
首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。
工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序以次类推。
#include <iostream.h>
void ShellSort(int* pData,int Count)
{
int step[4];
step[0] = 9;
step[1] = 5;
step[2] = 3;
step[3] = 1;

int iTemp;
int k,s,w;
for(int i=0;i<4;i++)
{
 k = step;
 s = -k;
 for(int j=k;j<Count;j++)
 {
  iTemp = pData[j];
  w = j-k;//求上step个元素的下标
  if(s ==0)
  {
  s = -k;
  s++;
  pData[s] = iTemp;
  }
  while((iTemp<pData[w]) && (w>=0) && (w<=Count))
  {
  pData[w+k] = pData[w];
  w = w-k;
  }
  pData[w+k] = iTemp;
 }
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
ShellSort(data,12);
for (int i=0;i<12;i++)
 cout<<data<<" ";
cout<<"\n";
}
呵呵,程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0步长造成程序异常而写的代码。这个代码我认为很值得一看。 这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并“超出本书讨论范围”的原因(我也不知道过程),我们只有结果了。

四、基于模板的通用排序:
这个程序我想就没有分析的必要了,大家看一下就可以了。不明白可以在论坛上问。
MyData.h文件
///////////////////////////////////////////////////////
class CMyData
{
public:
CMyData(int Index,char* strData);
CMyData();
virtual ~CMyData();

int m_iIndex;
int GetDataSize(){ return m_iDataSize; };
const char* GetData(){ return m_strDatamember; };
//这里重载了操作符:
CMyData& operator =(CMyData &SrcData);
bool operator <(CMyData& data );
bool operator >(CMyData& data );

private:
char* m_strDatamember;
int m_iDataSize;
};
////////////////////////////////////////////////////////

MyData.cpp文件
////////////////////////////////////////////////////////
CMyData::CMyData():
m_iIndex(0),
m_iDataSize(0),
m_strDatamember(NULL)
{
}

CMyData::~CMyData()
{
if(m_strDatamember != NULL)
 delete[] m_strDatamember;
m_strDatamember = NULL;
}

CMyData::CMyData(int Index,char* strData):
m_iIndex(Index),
m_iDataSize(0),
m_strDatamember(NULL)
{
m_iDataSize = strlen(strData);
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,strData);
}

CMyData& CMyData::operator =(CMyData &SrcData)
{
m_iIndex = SrcData.m_iIndex;
m_iDataSize = SrcData.GetDataSize();
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,SrcData.GetData());
return *this;
}

bool CMyData::operator <(CMyData& data )
{
return m_iIndex<data.m_iIndex;
}

bool CMyData::operator >(CMyData& data )
{
return m_iIndex>data.m_iIndex;
}
///////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////
//主程序部分
#include <iostream.h>
#include "MyData.h"

template <class T>
void run(T* pData,int left,int right)
{
int i,j;
T middle,iTemp;
i = left;
j = right;
//下面的比较都调用我们重载的操作符函数
middle = pData[(left+right)/2]; //求中间值
do{
 while((pData<middle) && (i<right))//从左扫描大于中值的数
  i++;  
 while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
  j--;
 if(i<=j)//找到了一对值
 {
  //交换
  iTemp = pData;
  pData = pData[j];
  pData[j] = iTemp;
  i++;
  j--;
 }
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left<j),递归左半边
if(left<j)
 run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
 run(pData,i,right);
}

template <class T>
void QuickSort(T* pData,int Count)
{
run(pData,0,Count-1);
}

void main()
{
CMyData data[] = {
 CMyData(8,"xulion"),
 CMyData(7,"sanzoo"),
 CMyData(6,"wangjun"),
 CMyData(5,"VCKBASE"),
 CMyData(4,"jacky2000"),
 CMyData(3,"cwally"),
 CMyData(2,"VCUSER"),
 CMyData(1,"isdong")
};
QuickSort(data,8);
for (int i=0;i<8;i++)
 cout<<data.m_iIndex<<" "<<data.GetData()<<"\n";
cout<<"\n";

////////////////////////////////////////////////////////
经典C++双向冒泡排序算法
经典C++双向冒泡排序算法
hawkman2k 发表于 2003-12-09
#include《iostream.h》
#define max 20 //最多记录个数
typedef int elemtype;
typedef elemtype recs[max];
void bibubble(recs r,int n)
{
int flag=1; //继续遍历时flag置1,已排好序不需遍历时为0
int i=0, j;
elemtype temp;
while(flag==1)
{
flag=0;
for(j=i+1;j《n-1;j++) //正向遍历找最大值
if(r[j]》r[j+1])
{
flag=1; //能交换时,说明未排好序,需继续
temp=r[j];
r[j]=r[j+1];
r[j+1]=temp;
}
for(j=n-i-1;j》=i+1;j--) //反向遍历
if(r[j]》r[j-1])
{
flag=1; //能交换时,说明未排好序,需继续
temp=r[j];
r[j]=r[j-1];
r[j-1]=temp;
}
i++;
}
}

void main()
{
recs A={2,5,3,4,6,10,9,8,7,1};
int n=10, i;
cout《《"双向冒泡排序"《《endl《《"排序前:";
for(i=0;i《n;i++)
cout《《A[i]《《"";
cout《《endl;
cout《《" 排序后: ";
bibubble(A,n);
for(i=0;i《n;i++)
cout《《A[i]《《"";
cout《《endl;
}
xoalyg
2012-02-27 · TA获得超过4178个赞
知道大有可为答主
回答量:2356
采纳率:100%
帮助的人:2376万
展开全部
/*

排序前:

603 633 411 925 953 348 242 238 374 285
288 295 314 10 990 661 905 120 791 64
613 950 34 126 229 834 498 925 902 588
605 856 329 618 2 801 269 35 807 768
655 952 490 379 215 400 534 911 908 899
968 437 754 433 770 449 683 324 127 503
293 883 232 295 51 377 599 371 918 317
723 517 853 907 779 255 394 291 798 165
175 208 130 733 488 292 852 867 139 250
880 558 318 244 64 79 496 382 674 251

排序后:

2 10 34 35 51 64 64 79 120 126
127 130 139 165 175 208 215 229 232 238
242 244 250 251 255 269 285 288 291 292
293 295 295 314 317 318 324 329 348 371
374 377 379 382 394 400 411 433 437 449
488 490 496 498 503 517 534 558 588 599
603 605 613 618 633 655 661 674 683 723
733 754 768 770 779 791 798 801 807 834
852 853 856 867 880 883 899 902 905 907
908 911 918 925 925 950 952 953 968 990

Press any key to continue
*/
#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

#define MAXlen 100

void select_sort(int *x, int n) { //选择排序
int i, j, min;
int t;
for (i = 0; i < n - 1; i++) { // 要选择的次数:0~n-2共n-1次
min = i; // 假设当前下标为i的数最小,比较后再调整
for (j = i + 1; j < n; j++) { //循环找出最小的数的下标是哪个
if (*(x + j) < *(x + min)) {
min = j; // 如果后面的数比前面的小,则记下它的下标
}
}
if (min != i) { // 如果min在循环中改变了,就需要交换数据
t = *(x + i);
*(x + i) = *(x + min);
*(x + min) = t;
}
}
}

int main() {
int i;
int iArr[MAXlen];
srand((unsigned int)time(NULL));
cout << "\n排序前:\n";
for(i = 0 ; i < MAXlen ; i++) {
iArr[i] = (unsigned int)rand() % 1000;
if(i % 10 == 0) cout << endl;
cout << iArr[i] << " ";
}
cout << endl;
select_sort(iArr,MAXlen);
cout << "\n排序后:\n";
for(i = 0 ; i < MAXlen ; i++) {
if(i % 10 == 0) cout << endl;
cout << iArr[i] << " ";
}
cout << "\n\n";
return 0;
}
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2012-02-27 · TA获得超过729个赞
知道小有建树答主
回答量:1123
采纳率:0%
帮助的人:886万
展开全部
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main()
{
vector<int> ivec(10);
vector<int>::iterator it=ivec.begin();
while(it!=ivec.end())
{
cin>>*it;
++it;
}
sort(ivec.begin(),ivec.end());
for(it=ivec.begin();it!=ivec.end();++it)
{
cout<<*it<<" ";
}
return 0;
}

纯正的C++
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友28b4182
2012-02-27 · TA获得超过7222个赞
知道大有可为答主
回答量:4847
采纳率:100%
帮助的人:1837万
展开全部
#include "stdio.h"
#include "conio.h"
int a[1000];
int num[1000];

int main(void)
{
int n=10,i,j,k,tmp;
for(i=0;i<n;i++)scanf("%d",&num[i]);
for(i=0;i<n;i++)//选择排序
{
k=i;
for(j=i+1;j<n;j++)
{
if(num[j]>num[k])k=j;
}
tmp=num[i];
num[i]=num[k];
num[k]=tmp;
}

for(i=0;i<n;i++)
{
if(i)putchar(',');
printf("%d",num[i]);
}
puts("");

return 0;
}
追问
这个是c语言c++呢
追答
C语言
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式