求1╱(1+x∧2)∧2的不定积分
2个回答
展开全部
x = tanz,dx = sec²z dz
1/(1 + x²)² = 1/(1 + tan²z)² = 1/(sec²z)² = cos⁴z
原式= ∫ cos⁴z•sec²z dz
= ∫ cos²z dz
= (1/2)∫ (1 + cos2z) dz
= (1/2)[z + (1/2)sin2z] + C
= (1/2)arctan(x) + (1/2)[x/√(1 + x²)][1/√(1 + x²)] + C
= (1/2)arctan(x) + x/[2(1 + x²)] + C
1/(1 + x²)² = 1/(1 + tan²z)² = 1/(sec²z)² = cos⁴z
原式= ∫ cos⁴z•sec²z dz
= ∫ cos²z dz
= (1/2)∫ (1 + cos2z) dz
= (1/2)[z + (1/2)sin2z] + C
= (1/2)arctan(x) + (1/2)[x/√(1 + x²)][1/√(1 + x²)] + C
= (1/2)arctan(x) + x/[2(1 + x²)] + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询