1个回答
展开全部
∫ t²/(1 + t) dt
= ∫ t(t + 1 - 1)/(1 + t) dt
= ∫ t dt - ∫ t/(1 + t) dt
= t²/2 - ∫ (t + 1 - 1)/(1 + t) dt
= t²/2 - ∫ dt + ∫ dt/(1 + t)
= t²/2 - t + ln|1 + t| + C
___________________________
∫ x/(1 - x²) dx
= ∫ d(x²/2)/(1 - x²)
= (-1/2)∫ d(1 - x²)/(1 - x²)
= (-1/2)ln|1 - x²| + C
= ∫ t(t + 1 - 1)/(1 + t) dt
= ∫ t dt - ∫ t/(1 + t) dt
= t²/2 - ∫ (t + 1 - 1)/(1 + t) dt
= t²/2 - ∫ dt + ∫ dt/(1 + t)
= t²/2 - t + ln|1 + t| + C
___________________________
∫ x/(1 - x²) dx
= ∫ d(x²/2)/(1 - x²)
= (-1/2)∫ d(1 - x²)/(1 - x²)
= (-1/2)ln|1 - x²| + C
追问
= ∫ d(x²/2)/(1 - x²)
= (-1/2)∫ d(1 - x²)/(1 - x²)
这2步怎么相等的,我不会算
追答
d(x²/2) = (1/2)d(x²) = (1/2)d[(-x²)/(-1)] = (1/2)(-1)d(-x²) = (-1/2)d(-x²) = (-1/2)d(-x² + 1)
= (-1/2)d(1 - x²)
逐步凑微分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询