已知a-b=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2)) -4sin^2(π/4 -b/4)的最
已知α-β=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2))-4sin^2(π/4-b/4)的最大值及最大值事的条件...
已知α-β=8π/3,且α≠kπ,求函数f(x)=(1-cos(π-a))/(csc(a/2)-sin(a/2)) -4sin^2(π/4 -b/4)的最大值及最大值事的条件
展开
展开全部
f(x)=(1+cosa)/[1/sin(a/2)-sin(a/2)]-[2-2cos(π/2 -b/2)]
=(1+cosa)/{[cos(a/2)]^2/sin(a/2)}-[2-2sin(b/2)]
=2[cos(a/2)]^2/{[cos(a/2)]^2/sin(a/2)}-[2-2sin(b/2)]
=2sin(a/2)-2+2sin(b/2)
=2[sin(a/2)}+sin(b/2)]-2
=4sin[(a+b)/4][cos[(a-b)/4]-2
=2sin[(a+b)/4]-2
sin[(a+b)/4]=1
(a+b)/4=2kπ+π/2 (k∈Z)
a+b=10kπ (k∈Z)
即当a+b=10kπ (k∈Z)时,f(x)最大,最大值为0
=(1+cosa)/{[cos(a/2)]^2/sin(a/2)}-[2-2sin(b/2)]
=2[cos(a/2)]^2/{[cos(a/2)]^2/sin(a/2)}-[2-2sin(b/2)]
=2sin(a/2)-2+2sin(b/2)
=2[sin(a/2)}+sin(b/2)]-2
=4sin[(a+b)/4][cos[(a-b)/4]-2
=2sin[(a+b)/4]-2
sin[(a+b)/4]=1
(a+b)/4=2kπ+π/2 (k∈Z)
a+b=10kπ (k∈Z)
即当a+b=10kπ (k∈Z)时,f(x)最大,最大值为0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询