圆周率的由来:
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。
埃及人似乎在更早的时候就知道圆周率了。 英国作家 John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。
例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数339/108,约等于3.139。
扩展资料:
公元前3世纪,古希腊数学家阿基米德研究中发现:当一个正多边形的边数增加时,它的形状就越来越接近圆。这一发现提供了计算圆周率的新途径。阿基米德集用圆内接正多边形和圆外切正多边形两个方向上同时逐步逼近圆,经过不懈的努力,获得了圆周率的值介于223/71和22/7之间的结论。
在我国,首先是由魏晋时期杰出的数学家刘徽得出了较精确的圆周率的值。他采用“割圆术”一直算到圆内接正192边形,得到圆周率的值是3.14。刘徽的方法是用圆的内接正多边形这个方向逐步逼近圆的。
大家更为熟悉的是我国著名数学家祖冲之所作出的杰出贡献!1500多年前,南北朝时期的祖冲之计算出圆周率π的值在3.1415926和3.1415927之间,并且得出了两个用分数表示的近似值:约率为22/7,密率为355/113。
祖冲之的这一成就,领先了西方约1000年,他取得这一非凡成果,正是基于对刘徽割圆术的继承和发展。至于他是否还使用了其他巧妙的方法,已不得而知。祖冲之的这一研究成果在全世界享有很高的声誉。
巴黎“发现官”科学博物馆的墙壁上介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌着祖冲之的大理石塑像,月球上有以祖冲之命名的环形山……
用正多边形通近圆,计算量非常大,要再向前推进,必须在方法上有所突破。
随着科学的不断发展,人类开始挣脱求正多边形的周长的繁难计算,求圆周率的方法也不断更新。近代以来,很多数学家都进行了深人研究,并取得了不同程度的成果。
电子计算机的问世带来了计算领域的革命,π的小数点后面的精确数字越来越多。2000年,某研究小组使用最先进的计算机,将圆周率计算到了小数点后12411亿位。
参考资料来源:百度百科-圆周率
2024-10-28 广告
很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.
π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法.
公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π
会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416.
公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926<π<3.1415927.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜.
15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录.
1579年法国韦达发现了关系式 ...首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式.
1650年瓦里斯把π表示成元穷乘积的形式
稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式.
1671年,苏格兰数学家格列哥里发现了
1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法.
1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取 ,则该式化简为
1794年勒让德证明了π是无理数,即不可能用两个整数的比表示.
1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根.
本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字.
人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……
很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.
π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法.
手写体写的π圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键。分析学上,π 可定义为是最小的 x > 0 使得 sin(x) = 0。
圆周率的知识:
常用的 π 近以值包括疏率“22/7”及密率“355/113”。这两项均由祖冲之给出。
π 约等于(精确到小数点后第100位)
3.14159 26535 89793 23846 26433 83279 50288 41971
69399 37510 58209 74944 59230 78164 06286 20899
86280 34825 34211 70680
π 的计算及历史
由于 π 的超越性,所以只能以近似值的方法计算 π。对于一般应用 3.14 或 22/7 已足够,但工程学常利用 3.1416 (5个有效数字) 或 3.14159 (6个有效数字)。至于密率 355/113 则是易于记忆,精确至7位有效数字的分数。
实验时期
中国古籍云:‘周三径一’,意即 π=3。公元前17世纪的埃及古籍《阿美斯纸草书》(Ahmes,又称“阿梅斯草片文书”;为英国人Henry Rhind于1858年发现,因此还称“Rhind草片文书”)是世界上最早给出圆周率近似值,为 256/81 (3 + 1/9 + 1/27 + 1/81) 或 3.160。
至阿基米得之前,π值之测定倚靠实物测量。
几何法时期?D?D反复割圆
阿基米得用几何方法得出圆周率是介乎 3又1/7 与 3又10/71 之间。
公元263年,刘徽用“割圆术”给出 π=3.14014 并限出 3.14 是个很好的近似值?D?D“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”;其中有求极限的思想。
公元466年,祖冲之用割圆术算到小数点后7位精度,这一纪录在世界上保持了一千年之久。为纪念祖冲之对中国圆周率发展的贡献,将这一推算值用他的名字被命名为“祖冲之圆周率”,简称祖率
分析法时期?D?D无穷级数
这一时期人们开始摆脱利用割圆术的繁复计算,开始利用无穷级数或无穷连乘积求π。
Ludolph van Ceulen (circa,1600年) 计算出首 35 个小数字。他对此感到自豪,因而命人把它刻在自己的墓碑上。
Slovene 数学家Jurij Vega于1789年得出首 140 个小数字,其中有 137 个是正确的。这个世界纪录维持了五十年。他是利用了John Machin于1706年提出的数式。
所有以上的方法都不能快速算出 π。第一个快速算法由 Machin 提出:
其中 arctan(x) 可由泰勒级数算出。类似方去称为“类Machin算法”。
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。
埃及人似乎在更早的时候就知道圆周率了。 英国作家 John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。
例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数339/108,约等于3.139。
扩展资料:
公元前3世纪,古希腊数学家阿基米德研究中发现:当一个正多边形的边数增加时,它的形状就越来越接近圆。这一发现提供了计算圆周率的新途径。阿基米德集用圆内接正多边形和圆外切正多边形两个方向上同时逐步逼近圆,经过不懈的努力,获得了圆周率的值介于223/71和22/7之间的结论。
在我国,首先是由魏晋时期杰出的数学家刘徽得出了较精确的圆周率的值。他采用“割圆术”一直算到圆内接正192边形,得到圆周率的值是3.14。刘徽的方法是用圆的内接正多边形这个方向逐步逼近圆的。
大家更为熟悉的是我国著名数学家祖冲之所作出的杰出贡献!1500多年前,南北朝时期的祖冲之计算出圆周率π的值在3.1415926和3.1415927之间,并且得出了两个用分数表示的近似值:约率为22/7,密率为355/113。
祖冲之的这一成就,领先了西方约1000年,他取得这一非凡成果,正是基于对刘徽割圆术的继承和发展。至于他是否还使用了其他巧妙的方法,已不得而知。祖冲之的这一研究成果在全世界享有很高的声誉。
巴黎“发现官”科学博物馆的墙壁上介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌着祖冲之的大理石塑像,月球上有以祖冲之命名的环形山……
用正多边形通近圆,计算量非常大,要再向前推进,必须在方法上有所突破。
随着科学的不断发展,人类开始挣脱求正多边形的周长的繁难计算,求圆周率的方法也不断更新。近代以来,很多数学家都进行了深人研究,并取得了不同程度的成果。
电子计算机的问世带来了计算领域的革命,π的小数点后面的精确数字越来越多。2000年,某研究小组使用最先进的计算机,将圆周率计算到了小数点后12411亿位
圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号, π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。
在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。
公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。
祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为"卢道夫数"。
圆周率的最新计算纪录
新世界纪录
圆周率的最新计算纪录由两位日本人Daisuke Takahashi和Yasumasa Kanada所创造。他们在日本东京大学的IT中心,以Gauss-Legendre算法编写程序,利用一台每秒可执行一万亿次浮点运算的超级计算机,从日本时间1999年9月18日19:00:52起,计算了37小时21分04秒,得到了圆周率的206,158,430,208(3*236)位十进制精度,之后和他们于1999年6月27日以Borwein四次迭代式计算了46小时得到的结果相比,发现最后45位小数有差异,因此他们取小数点后206,158,430,000位的p值为本次计算结果。这一结果打破了他们于1999年4月创造的68,719,470,000位的世界纪录。
参考资料: http://esyf.net/jswz/lbq/new_page_3.htm
广告 您可能关注的内容 |