一道高中物理电场题呀!
4.有一一根绝缘轻棒,可绕固定转轴O在竖直平面内无摩擦转动(O是轻棒的中点)。轻棒长为2L,质量不计,两端分别固定A、B两个小球,mA=2m,mB=m。A球不带电,B球带...
4. 有一一根绝缘轻棒,可绕固定转轴O在竖直平面内无摩擦转动(O是轻棒的中点)。轻棒长为2L,质量不计,两端分别固定A、B两个小球,mA=2m,mB=m 。A球不带电,B球带电量为+q。整个装置处于竖直向上,场强为E的匀强电场中。不计空气阻力。求:将细棒由水平位置释放,当细棒转至竖直位置时A球的速率多大?看了好几遍文字都没理解到底是怎么样放置。。。最好详细点 要手写啊!
展开
4个回答
展开全部
转动轴在棒的中间O点,开始时棒是水平的(速度为0,两个球谁在左或右,不影响结果)。
因两个球到转动轴的距离相等,所以两个球的速率相等(角速度相等,因半径相等,所以线速度大小相等),设所求的速率是 V 。
将两个球和轻杆作为系统(一个整体),用能量关系做。
从棒由水平位置释放,到细棒转至竖直位置时,有
mA*g*L-mB*g*L+qE*L=(mA*V^2 / 2)+(mB*V^2 / 2)
(2m)*g*L-m*g*L+qE*L=(2m*V^2 / 2)+(m*V^2 / 2)
得 V=根号[2*(mg+qE)L / (3 m) ]
注:因A球质量较大,且两球到转动轴距离相等,所以释放的,A球下降、B球上升。
因两个球到转动轴的距离相等,所以两个球的速率相等(角速度相等,因半径相等,所以线速度大小相等),设所求的速率是 V 。
将两个球和轻杆作为系统(一个整体),用能量关系做。
从棒由水平位置释放,到细棒转至竖直位置时,有
mA*g*L-mB*g*L+qE*L=(mA*V^2 / 2)+(mB*V^2 / 2)
(2m)*g*L-m*g*L+qE*L=(2m*V^2 / 2)+(m*V^2 / 2)
得 V=根号[2*(mg+qE)L / (3 m) ]
注:因A球质量较大,且两球到转动轴距离相等,所以释放的,A球下降、B球上升。
展开全部
对AB两球组成的系统,根据动能定理。2mgl-mgl+qEl=1/2mv^2+1/2.2m.v^2
O为轴,棒是水平放置的,由于A重力比B的重力大,因此A向下运动,同时B向上运动,最后位于竖直方向,即A在最低点,B在最高点。
O为轴,棒是水平放置的,由于A重力比B的重力大,因此A向下运动,同时B向上运动,最后位于竖直方向,即A在最低点,B在最高点。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
要有计算式的呀
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询