某数学兴趣小组开展了一次活动,过程如下: 设∠BAC=θ(0°<θ<90°)小棒依次摆放在两射线
某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°)小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.如图乙所示,从点A1开始,用等长的小棒依...
某数学兴趣小组开展了一次活动,过程如下:
设∠BAC=θ(0°<θ<90°)小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.
如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.
数学思考:若只能摆放4根小棒,求θ的范围.
这个 展开
设∠BAC=θ(0°<θ<90°)小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.
如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.
数学思考:若只能摆放4根小棒,求θ的范围.
这个 展开
4个回答
展开全部
【答案】解:(1)能
(2)①22.5°
②方法一:
∵AA1=A1A2=A2A3=1, A1A2⊥A2A3,∴A1A3=,AA3=1+.
又∵A2A3⊥A3A4,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,
∴AA3=A3A4,AA5=A5A6,∴a2= A3A4=AA3=1+,a3=AA3+A3A5=a2+A3A5.∵A3A5=a2,
∴a3=A5A6=AA5=a2+a2=(+1)2.
方法二:
∵AA1=A1A2=A2A3=1, A1A2⊥A2A3,∴A1A3=,AA3=1+.
又∵A2A3⊥A3A4,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,
∴a2=A3A4=AA3=1+,又∵∠A2A3A4=∠A4A5A6=90°,∠A2A4A3=∠A4A6A5,∴△A2A3A4∽△A4A5A6,
∴,∴a3==(+1)2.
an=(+1)n-1.
(3)
(4)由题意得,∴15°<≤18°.
(不要怀疑,我是复制的!反正我是没做出来,非常好奇楼主前面做出来了吗?)
(2)①22.5°
②方法一:
∵AA1=A1A2=A2A3=1, A1A2⊥A2A3,∴A1A3=,AA3=1+.
又∵A2A3⊥A3A4,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,
∴AA3=A3A4,AA5=A5A6,∴a2= A3A4=AA3=1+,a3=AA3+A3A5=a2+A3A5.∵A3A5=a2,
∴a3=A5A6=AA5=a2+a2=(+1)2.
方法二:
∵AA1=A1A2=A2A3=1, A1A2⊥A2A3,∴A1A3=,AA3=1+.
又∵A2A3⊥A3A4,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,
∴a2=A3A4=AA3=1+,又∵∠A2A3A4=∠A4A5A6=90°,∠A2A4A3=∠A4A6A5,∴△A2A3A4∽△A4A5A6,
∴,∴a3==(+1)2.
an=(+1)n-1.
(3)
(4)由题意得,∴15°<≤18°.
(不要怀疑,我是复制的!反正我是没做出来,非常好奇楼主前面做出来了吗?)
展开全部
解:(1)能.(1分)
(2)①∵AA1=A1A2=A2A3=1,A1A2⊥A2A3
∴θ2=45°,
θ=22.5°.(2分)
故答案为22.5;
②
∵AA1=A1A2=A2A3=1,A1A2⊥A2A3,
∴A1A3= 2 ,AA3=1+ 2 .
又∵A2A3⊥A3A4,
∴A1A2∥A3A4.
同理:A3A4∥A5A6,
∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,
∴AA3=A3A4,AA5=A5A6
∴a2=A3A4=AA3=1+ 2 ,(3分)
a3=AA3+A3A5=a2+A3A5.
∵A3A5= 2 a2,
∴a3=A5A6=AA5=a2+ 2 a2=( 2 +1)2.
∴an=( 2 +1)n-1;(5分)
(3)∵A1A2=AA1
∴θ1=∠A2A1A3=2θ,
∴θ2=∠A2A4A3=θ+2θ=3θ,
∴θ3=∠A2A4A3+θ=4θ,
故答案为θ1=2θ,θ2=3θ,θ3=4θ;
(4)由题意得:θ4=4θ≤90°且θ5=5θ>90°,
∴18°<θ≤22.5°.
(2)①∵AA1=A1A2=A2A3=1,A1A2⊥A2A3
∴θ2=45°,
θ=22.5°.(2分)
故答案为22.5;
②
∵AA1=A1A2=A2A3=1,A1A2⊥A2A3,
∴A1A3= 2 ,AA3=1+ 2 .
又∵A2A3⊥A3A4,
∴A1A2∥A3A4.
同理:A3A4∥A5A6,
∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,
∴AA3=A3A4,AA5=A5A6
∴a2=A3A4=AA3=1+ 2 ,(3分)
a3=AA3+A3A5=a2+A3A5.
∵A3A5= 2 a2,
∴a3=A5A6=AA5=a2+ 2 a2=( 2 +1)2.
∴an=( 2 +1)n-1;(5分)
(3)∵A1A2=AA1
∴θ1=∠A2A1A3=2θ,
∴θ2=∠A2A4A3=θ+2θ=3θ,
∴θ3=∠A2A4A3+θ=4θ,
故答案为θ1=2θ,θ2=3θ,θ3=4θ;
(4)由题意得:θ4=4θ≤90°且θ5=5θ>90°,
∴18°<θ≤22.5°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
最好一个答案错了!!!正确答案是
4)由题意得,∴18°≤角<22.5°.
4)由题意得,∴18°≤角<22.5°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
最后一问应是18和22.5之间
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询