泰勒公式中的x0有什么意义,x可以取任意值吗,请说细一点,谢谢了 10

 我来答
帐号已注销
2021-09-20 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:169万
展开全部

x0可以取任何常数,不包括无穷大。

泰勒公式就是将函数在x0附近展开成幂级数,其思路是把一个复杂的东西分解成若干个简单的东西的相加,物理上也称叠加原理。x0可以取任意值。

在展开相同项数的情况下,x0离所要求的值越近则精度越高,否则就要靠展开更高次的项来提高精度。画出在某点展开一定项数的泰勒多项式和被展开的函数,会发现在这点附近两个函数是基本重合的,越到两边离得越开。而增加多项式的项数可以使重合部分延长。

泰勒公式

数学分析中重要的内容,也是研究函数极限和估计误差等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。

利用泰勒公式可以将非线性问题化为线性问题,且具有很高的精确度,因此其在微积分的各个方面都有重要的应用。泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

数学好玩啊123
2012-03-02 · TA获得超过5832个赞
知道大有可为答主
回答量:2585
采纳率:72%
帮助的人:837万
展开全部
x0可以取任何数,往往根据需要把f(x)展开成关于x-x0的多项式,便于近似计算。x必须取收敛区间的数,否则即使按照泰勒公式展开,展开式也不会等于f(x)
比如1/(1-x)=1+x+x^2+……+x^n+……(-1<x<1)
如果令x=2,则1+2+2^2+……+2^n+……=1/(1-2)=-1显然这是错误的,因为我们知道无穷级数∑2^n发散到无穷大
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ABCXYZ7777
2017-08-02 · TA获得超过3.3万个赞
知道大有可为答主
回答量:2.2万
采纳率:72%
帮助的人:1.1亿
展开全部
泰勒公式就是将函数在x0附近展开成幂级数,其思路是把一个复杂的东西分解成若干个简单的东西的相加,物理上也称叠加原理。x0可以取任意值。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ctgong19428dacd
2017-07-27 · TA获得超过3074个赞
知道小有建树答主
回答量:669
采纳率:81%
帮助的人:336万
展开全部
泰勒公式中的x0称为展开中心。
x取值范围原则上是:带拉格朗日余项的n阶泰勒公式成立的范围是n+1阶可导的区间。带皮亚诺余项的n阶泰勒公式成立的范围是n阶可导的区间。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数码答疑

2017-07-29 · 解答日常生活中的数码问题
数码答疑
采纳数:8805 获赞数:18623

向TA提问 私信TA
展开全部
x0可以取任何常数,不包括无穷大
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式