用图像法求下列一元二次方程的近似根
展开全部
用图像法解题,你就要先配方,再试根。
例如第一题:设f(x)=x²-5x+5 = (x-2.5)² - 1.25
然后求出曲线是对称轴为x=5/2,顶点为(2.5,1.25),开口向上的抛物线,可知方程f(x)=0两根在2.5的左右分布,可以逐个整数代入函数f(x),根据单调性求解。x<2.5时函数递减,f(2)= -1< f(1) = 1,所以左边的根在1和2之间; x>2.5时函数递增,f(3)= -1< f(4) = 1,所以右边的根在3和4之间。
(图像法就是遵循这个思路求近似值的,下面几题我就不详细算了,很容易的。 我觉得图像法的计算缺乏严谨性,还是用根的判别式计算比较快和准确,下面我用根的判别式的方法解一次给你比较。答案我都验算过的)
(1) 解:△=(-5)²-4*1*5 = 5 > 0
∴原方程的解为 x= (5±√5)/2
即,x =(5+√5)/2 ≈ 3.618 ,或 x= (5-√5)/2 ≈ 1.382
(2) 解:原方程整理为:2x²-4x-5=0
而,△=(-4)² - 4*2*(-5) = 56 > 0
∴原方程的解为 x= (4±√56)/4
即,x = (4+√56)/4 ≈ 2.871 ,或 x= (4-√56)/4 ≈ - 0.871
(3) 解:原方程整理为:x²-6x-3=0
而,△=(-6)² - 4*1*(-3) = 48 > 0
∴原方程的解为 x= (6±√48)/2 = 3±2√3
即,x = 3+2√3 ≈ 6.464 ,或 x= 3-2√3 ≈ - 0.464
(4) 解:△=4² - 4*5*(-3) = 76 > 0
∴原方程的解为 x= (- 4±√76)/10 = (- 2±√19)/5
即,x = (- 2+√19)/5 ≈ 0.472 ,或 x= (- 2-√19)/5 ≈ - 1.272
例如第一题:设f(x)=x²-5x+5 = (x-2.5)² - 1.25
然后求出曲线是对称轴为x=5/2,顶点为(2.5,1.25),开口向上的抛物线,可知方程f(x)=0两根在2.5的左右分布,可以逐个整数代入函数f(x),根据单调性求解。x<2.5时函数递减,f(2)= -1< f(1) = 1,所以左边的根在1和2之间; x>2.5时函数递增,f(3)= -1< f(4) = 1,所以右边的根在3和4之间。
(图像法就是遵循这个思路求近似值的,下面几题我就不详细算了,很容易的。 我觉得图像法的计算缺乏严谨性,还是用根的判别式计算比较快和准确,下面我用根的判别式的方法解一次给你比较。答案我都验算过的)
(1) 解:△=(-5)²-4*1*5 = 5 > 0
∴原方程的解为 x= (5±√5)/2
即,x =(5+√5)/2 ≈ 3.618 ,或 x= (5-√5)/2 ≈ 1.382
(2) 解:原方程整理为:2x²-4x-5=0
而,△=(-4)² - 4*2*(-5) = 56 > 0
∴原方程的解为 x= (4±√56)/4
即,x = (4+√56)/4 ≈ 2.871 ,或 x= (4-√56)/4 ≈ - 0.871
(3) 解:原方程整理为:x²-6x-3=0
而,△=(-6)² - 4*1*(-3) = 48 > 0
∴原方程的解为 x= (6±√48)/2 = 3±2√3
即,x = 3+2√3 ≈ 6.464 ,或 x= 3-2√3 ≈ - 0.464
(4) 解:△=4² - 4*5*(-3) = 76 > 0
∴原方程的解为 x= (- 4±√76)/10 = (- 2±√19)/5
即,x = (- 2+√19)/5 ≈ 0.472 ,或 x= (- 2-√19)/5 ≈ - 1.272
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询