1个回答
展开全部
题:设双曲线的-个焦点为F;虚轴的-个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )
A、根号2 B、根号3 C、(根号3+1)/2 D、(根号5+1)/2
分析:先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=b/a•x垂直,得出其斜率的乘积为-1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.
解答:解:设双曲线方程为x^2/a^2-y^2/b^2=1(a>0,b>0),
则F(c,0),B(0,b)
直线FB:bx+cy-bc=0与渐近线y=b/a•x垂直,
所以-b/c • b/a=-1,即b^2=ac
所以c^2-a^2=ac,即e^2-e-1=0,
所以e=(1+根号5)/2或e=(1-根号5)/2(舍去)
故选D.
点评:本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.
A、根号2 B、根号3 C、(根号3+1)/2 D、(根号5+1)/2
分析:先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=b/a•x垂直,得出其斜率的乘积为-1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.
解答:解:设双曲线方程为x^2/a^2-y^2/b^2=1(a>0,b>0),
则F(c,0),B(0,b)
直线FB:bx+cy-bc=0与渐近线y=b/a•x垂直,
所以-b/c • b/a=-1,即b^2=ac
所以c^2-a^2=ac,即e^2-e-1=0,
所以e=(1+根号5)/2或e=(1-根号5)/2(舍去)
故选D.
点评:本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想.
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询