已知三角形ABC中,满足A-C=90度a+c=根号2b求角c
展开全部
A-C=90度 A=C+90°
a+c=根号2b
由正弦定理
a/sinA=b/sinB=c/sinC
设a/sinA=b/sinB=c/sinC=k
a=ksinA b=ksinB c=ksinC 代入得
ksinA+ksinC=√2*ksinB
所以 sinA+sinC=√2*sinB
cosC+sinC=√2*sin(180°-A-C)=√2*sin(90°-2C)=√2*cos2C
cosC+sinC=√2*(cos^2C-sin^2C)=√2*(cosC-sinC)(cosC+sinC)
cosC-sinC=√2/2 cosC+sinC≠0
平方得
1-sin2C=1/2
sin2C=1/2 a为最大边,c为最小边,C为最小角,
∴2C=30°
C=15°
a+c=根号2b
由正弦定理
a/sinA=b/sinB=c/sinC
设a/sinA=b/sinB=c/sinC=k
a=ksinA b=ksinB c=ksinC 代入得
ksinA+ksinC=√2*ksinB
所以 sinA+sinC=√2*sinB
cosC+sinC=√2*sin(180°-A-C)=√2*sin(90°-2C)=√2*cos2C
cosC+sinC=√2*(cos^2C-sin^2C)=√2*(cosC-sinC)(cosC+sinC)
cosC-sinC=√2/2 cosC+sinC≠0
平方得
1-sin2C=1/2
sin2C=1/2 a为最大边,c为最小边,C为最小角,
∴2C=30°
C=15°
展开全部
A-C=90`,则A=C+90`
sinA=sin(90`+C)=cosC
根据正弦定理,a=bsinA/sinB=bcosC/sinB c=bsinC/sinB
由于a+c=√2b 于是bcosC/sinB+bsinC/sinB=√2b
cosC/sinB+sinC/sinB=√2
两边同乘以sinB得,cosC+sinC=√2sinB
两边同除以√2得,cosC/√2+sinC/√2=sinB
分母有理化得,(√2/2)cosC+(√2/2)sinC=sinB
sin45`cosC+cos45`sinC=sinB
利用正弦的和角公式得,sin(45`+C)=sinB
于是45`+C=B或45`+C=180-B [同角或等角的正弦相等,互补角的正弦也相等]
由于A+B+C=180`
于是,若45`+C=B 而已知A=C+90`
于是C+90`+C+45`+C=180` 3C=45` C=15`
若C+45`=180-B即B=180`-45`-C=135`-C 而已知A=90`+C
则90`+C+135`-C+C=180`,出现负角,不合题意,舍去。
所以C=15`
sinA=sin(90`+C)=cosC
根据正弦定理,a=bsinA/sinB=bcosC/sinB c=bsinC/sinB
由于a+c=√2b 于是bcosC/sinB+bsinC/sinB=√2b
cosC/sinB+sinC/sinB=√2
两边同乘以sinB得,cosC+sinC=√2sinB
两边同除以√2得,cosC/√2+sinC/√2=sinB
分母有理化得,(√2/2)cosC+(√2/2)sinC=sinB
sin45`cosC+cos45`sinC=sinB
利用正弦的和角公式得,sin(45`+C)=sinB
于是45`+C=B或45`+C=180-B [同角或等角的正弦相等,互补角的正弦也相等]
由于A+B+C=180`
于是,若45`+C=B 而已知A=C+90`
于是C+90`+C+45`+C=180` 3C=45` C=15`
若C+45`=180-B即B=180`-45`-C=135`-C 而已知A=90`+C
则90`+C+135`-C+C=180`,出现负角,不合题意,舍去。
所以C=15`
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询