求微分方程通解 y''-4y'+4y=2^2x+e^x+1
1个回答
展开全部
特征方程为r²-4r+4=0,有一对重根r=2
其对应的齐次方程的通解就是Y=(C1+C2·x)·e^(2x)
C1,C2为任意常数。
令f(x)=2^2x+e^x+1.
令F(D)=4-4D+D²,则原微分方程的一个特解就是y*=[1/F(D)]f(x)
=[1/F(D)](2^2x+e^x+1)
=[1/F(D)]2^2x + [1/F(D)]e^x + 1/(4-4D+D²)
=[1/F(D)]e^((2ln2)x) + [1/F(D)]e^x + (1/4 +(1/4)D +…………)
=[1/F(2ln2)]e^((2ln2)x) + [1/F(1)]e^x + 1/4
=e^((2ln2)x)/(2ln2 -2)² + e^x/(1 -2)² + 1/4
=4^x /(2ln2 -2)² + e^x + 1/4
则原微分方程的通解为
y=Y+y*
=(C1+C2·x)·e^(2x) + 4^x /(2ln2 -2)² + e^x + 1/4
其对应的齐次方程的通解就是Y=(C1+C2·x)·e^(2x)
C1,C2为任意常数。
令f(x)=2^2x+e^x+1.
令F(D)=4-4D+D²,则原微分方程的一个特解就是y*=[1/F(D)]f(x)
=[1/F(D)](2^2x+e^x+1)
=[1/F(D)]2^2x + [1/F(D)]e^x + 1/(4-4D+D²)
=[1/F(D)]e^((2ln2)x) + [1/F(D)]e^x + (1/4 +(1/4)D +…………)
=[1/F(2ln2)]e^((2ln2)x) + [1/F(1)]e^x + 1/4
=e^((2ln2)x)/(2ln2 -2)² + e^x/(1 -2)² + 1/4
=4^x /(2ln2 -2)² + e^x + 1/4
则原微分方程的通解为
y=Y+y*
=(C1+C2·x)·e^(2x) + 4^x /(2ln2 -2)² + e^x + 1/4
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询