已知向量m=(a—c,b),n=(a+c,b-a),且m×n=0,其中A.B.C是三角形ABC的三内角,a.b.c分别是角
已知向量m=(a—c,b),n=(a+c,b-a),且m×n=0,其中A.B.C是三角形ABC的三内角,a.b.c分别是角A.B.C的对边,且c=2√3求角C的大小求三角...
已知向量m=(a—c,b),n=(a+c,b-a),且m×n=0,其中A.B.C是三角形ABC的三内角,a.b.c分别是角A.B.C的对边,且c=2√3
求角C的大小
求三角形ABC周长的取值范围 展开
求角C的大小
求三角形ABC周长的取值范围 展开
1个回答
展开全部
m.n=0
(a-c,b).(a+c,b-a)=0
a^2-c^2+b^2 -ab =0
c^2 = a^2+b^2-ab
by cosine-rule
-2abcosC = -ab
cosC = 1/2
C = π/3
ABC周长=S
= a+b+c
= csinA/sinC + csinB/sinC + c
= c( sinA/sinC + sinB/sinC + 1)
= 2√3 ( 2sinA + 2sinB +1)
= 2√3( 2sinA + 2sin(2π/3-A) +1)
S' = 2√3(2cosA -2cos(2π/3-A)) =0
cosA - ((-1/2)cosA + (√3/2)sinA ) =0
(3/2)cosA = (√3/2)sinA
tanA = √3/3
A = π/6 (max)
2√3 <S <= 8√3
(a-c,b).(a+c,b-a)=0
a^2-c^2+b^2 -ab =0
c^2 = a^2+b^2-ab
by cosine-rule
-2abcosC = -ab
cosC = 1/2
C = π/3
ABC周长=S
= a+b+c
= csinA/sinC + csinB/sinC + c
= c( sinA/sinC + sinB/sinC + 1)
= 2√3 ( 2sinA + 2sinB +1)
= 2√3( 2sinA + 2sin(2π/3-A) +1)
S' = 2√3(2cosA -2cos(2π/3-A)) =0
cosA - ((-1/2)cosA + (√3/2)sinA ) =0
(3/2)cosA = (√3/2)sinA
tanA = √3/3
A = π/6 (max)
2√3 <S <= 8√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询