高中三角函数公式
展开全部
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A = 2tanA/(1-tan^2 A)
Sin2A=2SinA•CosA
Cos2A = Cos^2 A--Sin^2 A
=2Cos^2 A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)^3;
cos3A = 4(cosA)^3 -3cosA
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)}
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a•sin(a)+b•cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]
a•sin(a)-b•cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]^2;
1-sin(a) = [sin(a/2)-cos(a/2)]^2;;
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A = 2tanA/(1-tan^2 A)
Sin2A=2SinA•CosA
Cos2A = Cos^2 A--Sin^2 A
=2Cos^2 A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)^3;
cos3A = 4(cosA)^3 -3cosA
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)}
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a•sin(a)+b•cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]
a•sin(a)-b•cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]^2;
1-sin(a) = [sin(a/2)-cos(a/2)]^2;;
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
展开全部
倒数关系:sina*csca=cosa*seca=tga*ctga=1
平方关系:sin^a+cos^a =sec^ a-tg^ a=csc^a-ctg^a=1
和差公式:
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-cosasinb (将上式的b用-b代替即得)
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb (将上式的b用-b代替即得)
tg(a+b)=(tga+tgb)/(1-tgatgb)
二倍角公式:(含万能公式)
sin2a=2sinacosa=2tga/(1+tg^a)
cos2a=2cos^a-1=1-2sin^a=(1-tg^a)/(1+tg^a)
tg2a=2tga/(1-tg^a)
半角公式:
(sina)^=(1-cos2a)/2 (将a用a/2代替即得半角描述)
(cosa)^=(1+cos2a)/2
(tga)^=(1-cos2a)/(1+cos2a)
三倍角公式:
sin3a= 3sina-4sin^3 a
cos3a=-3cosa+4cos^3 a
积化和差公式:
sinacosb= [sin(a+b)+sin(a-b)]/2 (将上面关于sin的和差公式相加除以2即得)
cosasinb= [sin(a+b)-sin(a-b)]/2 (将上面关于sin的和差公式相减除以2即得)
cosacosb= [cos(a+b)+cos(a-b)]/2 (将上面关于cos的和差公式相加除以2即得)
sinasinb=-[cos(a+b)-cos(a-b)]/2 (将上面关于cos的和差公式相加除以2即得)
和差化积公式:
sina+sinb= 2sin(a+b)/2cos(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)
sina-sinb= 2cos(a+b)/2sin(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)
cosa+cosb= 2cos(a+b)/2cos(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)
cosa-cosb=-2sin(a+b)/2sin(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)
平方关系:sin^a+cos^a =sec^ a-tg^ a=csc^a-ctg^a=1
和差公式:
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-cosasinb (将上式的b用-b代替即得)
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb (将上式的b用-b代替即得)
tg(a+b)=(tga+tgb)/(1-tgatgb)
二倍角公式:(含万能公式)
sin2a=2sinacosa=2tga/(1+tg^a)
cos2a=2cos^a-1=1-2sin^a=(1-tg^a)/(1+tg^a)
tg2a=2tga/(1-tg^a)
半角公式:
(sina)^=(1-cos2a)/2 (将a用a/2代替即得半角描述)
(cosa)^=(1+cos2a)/2
(tga)^=(1-cos2a)/(1+cos2a)
三倍角公式:
sin3a= 3sina-4sin^3 a
cos3a=-3cosa+4cos^3 a
积化和差公式:
sinacosb= [sin(a+b)+sin(a-b)]/2 (将上面关于sin的和差公式相加除以2即得)
cosasinb= [sin(a+b)-sin(a-b)]/2 (将上面关于sin的和差公式相减除以2即得)
cosacosb= [cos(a+b)+cos(a-b)]/2 (将上面关于cos的和差公式相加除以2即得)
sinasinb=-[cos(a+b)-cos(a-b)]/2 (将上面关于cos的和差公式相加除以2即得)
和差化积公式:
sina+sinb= 2sin(a+b)/2cos(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)
sina-sinb= 2cos(a+b)/2sin(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)
cosa+cosb= 2cos(a+b)/2cos(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)
cosa-cosb=-2sin(a+b)/2sin(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询