将函数f(x)=sinx/2展开成x的幂级数
3个回答
展开全部
解答:题设函数的各阶求导:
f^(n)(x)=(1/2)^n*sin(1/2x+nπ/2) ;其中n=0、1、2、3、……
而:
f^(n)(0)取值为:0、1/2、0、-1/8、0、1/32……;(n=0、1、2、3、……)
因此f(x)的迈克劳林级数为:
f(0)+f'(0)x+f''(0)x^2/2!+……+f^(n)X^n/n!+……;
具体代入:
0+x/2+0-(x^3/8)/3!+0+(X^5/32)/5!-……+(-1)^n(1/2)^nX^(2n+1)/(2n+1)!+……
化简:x/2-(x^3/8)/3!+(X^5/32)/5!-……+(-1)^n(1/2)^nX^(2n+1)/(2n+1)!+……
该级数的收敛半径为R=+无穷大;
检验:|X-X0|<R 内,极限limRn(X)=0;(注n——>无穷)
因此,综上可得:
y=sinx/2的展开幂次级:
sinX/2=x/2-(x^3/8)/3!+(X^5/32)/5!-……+(-1)^n(1/2)^nX^(2n+1)/(2n+1)!+……(注X∈R)
但愿对你有帮助!!!!!!!!祝你学习进步!!!
f^(n)(x)=(1/2)^n*sin(1/2x+nπ/2) ;其中n=0、1、2、3、……
而:
f^(n)(0)取值为:0、1/2、0、-1/8、0、1/32……;(n=0、1、2、3、……)
因此f(x)的迈克劳林级数为:
f(0)+f'(0)x+f''(0)x^2/2!+……+f^(n)X^n/n!+……;
具体代入:
0+x/2+0-(x^3/8)/3!+0+(X^5/32)/5!-……+(-1)^n(1/2)^nX^(2n+1)/(2n+1)!+……
化简:x/2-(x^3/8)/3!+(X^5/32)/5!-……+(-1)^n(1/2)^nX^(2n+1)/(2n+1)!+……
该级数的收敛半径为R=+无穷大;
检验:|X-X0|<R 内,极限limRn(X)=0;(注n——>无穷)
因此,综上可得:
y=sinx/2的展开幂次级:
sinX/2=x/2-(x^3/8)/3!+(X^5/32)/5!-……+(-1)^n(1/2)^nX^(2n+1)/(2n+1)!+……(注X∈R)
但愿对你有帮助!!!!!!!!祝你学习进步!!!
展开全部
(sinx)/2= 0.5(x-x^3/3!+x^5/5!+...(-1)^n*x^(2n+1)/(2n+1)!)
sin(x/2)= x/2-x^3/(3!*2^3)+x^5/(5!*2^5)+...(-1)^n*x^(2n+1)/[(2n+1)!*2^(2n+1)])
sin(x/2)= x/2-x^3/(3!*2^3)+x^5/(5!*2^5)+...(-1)^n*x^(2n+1)/[(2n+1)!*2^(2n+1)])
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
假如你知道sinx的展开式,将这个式子中的x换成x/2即可。
追问
不好意思,主要是我不会,必须要演算过程才可以。
追答
就是和sinx的过程一样。
展开式有直接展开和间接展开两种方式。理论上说所有能间接展开的都能直接展开。
基本初等函数中,n阶导数能求出表达式的就直接展开,具体的有sinx,exp(x)(e的x次幂),ln(1+x).(1+x)的m次幂(m不是整数的情况)。
其他的函数,例如cosx也可以直接展开,但利用sinx的展开式求导更方便。
展开式一般的是间接展开。就是利用已知的展开式来展开,应该掌握的展开式除上述的以外还有1/(1+x).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询