设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0,f'(x)g(x)+f(x)g'(x)>0,且g(3)=0 f(x)g(x)<0的解集
展开全部
解:设F(x)=f(x)g(x)
f(x),g(x)分别是定义在R上的奇函数和偶函数,所以可得:F(x)为奇函数,
当x<0,f'(x)g(x)+f(x)g'(x)>0
说明 F(x)=f(x)g(x) 在 (-∞,0) 上单调递增,g(3)=g(-3)=0
F(-3)=0
F(x)=f(x)g(x)<0=F(-3) 所以有:x<-3
因F(x)为奇函数所以单调性不改变,
当x>0时有:F(3)=0
即:F(x)=f(x)g(x)<0=F(3) 所以有:0<x<3
f(x),g(x)分别是定义在R上的奇函数和偶函数,所以可得:F(x)为奇函数,
当x<0,f'(x)g(x)+f(x)g'(x)>0
说明 F(x)=f(x)g(x) 在 (-∞,0) 上单调递增,g(3)=g(-3)=0
F(-3)=0
F(x)=f(x)g(x)<0=F(-3) 所以有:x<-3
因F(x)为奇函数所以单调性不改变,
当x>0时有:F(3)=0
即:F(x)=f(x)g(x)<0=F(3) 所以有:0<x<3
更多追问追答
追问
怎么理解F(x)=f(x)g(x)<0=F(-3)?
追答
F(x)=f(x)g(x)
f(x)g(x)<0 就是:F(x)<0
而:F(-3)=0 所以有:F(x)<F(-3)
因为是增函数,所以有:
x<-3
2012-03-04
展开全部
楼上,,牛
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询