急,答对再加30分!!!平面内的两条直线有相交和平行两种位置关系等等题目 30
急,答对再加30分!!!平面内的两条直线有相交和平行两种位置关系……平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠...
急,答对再加30分!!!平面内的两条直线有相交和平行两种位置关系……
平面内的两条直线有相交和平行两种位置关系
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(需要过程)
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(需要证明过程!)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.(需要证明过程) 展开
平面内的两条直线有相交和平行两种位置关系
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(需要过程)
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(需要证明过程!)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.(需要证明过程) 展开
5个回答
展开全部
(1)不成立 ∠BPD=∠B+∠D
过点P做 AB的平行线
因为 AB∥PE∥CD
所以∠1=∠B
∠2=∠D
因为∠1+∠2=∠BPD
所以∠BPD=∠B+∠D
(2)∠BPD=∠B+∠D+∠BQD
(3)∠A+∠B+∠C+∠D+∠E+∠F=360°
过点P做 AB的平行线
因为 AB∥PE∥CD
所以∠1=∠B
∠2=∠D
因为∠1+∠2=∠BPD
所以∠BPD=∠B+∠D
(2)∠BPD=∠B+∠D+∠BQD
(3)∠A+∠B+∠C+∠D+∠E+∠F=360°
参考资料: http://zhidao.baidu.com/question/373614113.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不成立,结论是∠BPD=∠B+∠D.延长BP交CD于点E,∵AB∥CD. ∴∠B=∠BED.又∠BPD=∠BED+∠D ∴∠BPD=∠B+∠D. 2.结论:∠BPD=∠BQD+∠B+∠D.3.由2的结论得到:∠AGB=∠A+∠B+∠E.又∵∠AGB=∠CGF.∠CGF+∠C+∠D+∠F=360°∴∠A+∠B+∠C+∠D∠E+∠F=360°
G要添在B点和A点之间的那个点上,而∠AGB和∠CGF是对顶角,所以相等,得出结论后,等量代换
大家多多支持啊~
G要添在B点和A点之间的那个点上,而∠AGB和∠CGF是对顶角,所以相等,得出结论后,等量代换
大家多多支持啊~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
:(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询