
在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4.求cosA\sinA+cosC/sinC
展开全部
ac=b^2
即(sinA*2R)(sinC*2R)=(sinB*2R)^2
∴sinAsinC=(sinB)^2
cosA/sinA+cosC/sinC
=(cosAsinC+cosCsinA)/sinAsinC
=sin(A+C)/sinAsinC
=sin(π-B)/(sinB)^2
=1/sinB (sinB>0)
=1/√(1-cos^2B)
=1/√(1-9/16)
=4/√7
=4√7/7
即(sinA*2R)(sinC*2R)=(sinB*2R)^2
∴sinAsinC=(sinB)^2
cosA/sinA+cosC/sinC
=(cosAsinC+cosCsinA)/sinAsinC
=sin(A+C)/sinAsinC
=sin(π-B)/(sinB)^2
=1/sinB (sinB>0)
=1/√(1-cos^2B)
=1/√(1-9/16)
=4/√7
=4√7/7
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询