已知函数f(x)=ax^3+bx^2-9x在x=3处取得极大值0,若过点p(-1,m)可作曲线的切线三条求m的取值范围

安乐失意中
2012-03-04 · TA获得超过3217个赞
知道小有建树答主
回答量:348
采纳率:0%
帮助的人:443万
展开全部
设过P点的切线切曲线于点(x0,y0),则切线的斜率k=-3x02+12x0-9
所以切线方程为y=(-3x02+12x0-9)(x+1)+mw
故y0=(-3x02+12x0-9)(x0+1)+m=-x03+6x02-9x0
要使过P可作曲线y=f(x)的切线有三条,
则方程(-3x02+12x0-9)(x0+1)+m=-x03+6x02-9x0有三解∴m=2x°3-3x°2-12x°+9,令g(x)=2x3-3x2-12x+9
则g′(x)=6x2-6x-12=6(x+1)(x-2)
易知x=-1,2为g(x)的极值大、极小值点,又g(x)极小=-11,g(x)极大=16,
故满足条件的m的取值范围-11<m<16
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式