高中导数公式
展开全部
① C'=0(C为常数函数)
② (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数
③ (sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
禅禅-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|<1)
(arcothx)'=1/(x^2-1) (|x|>1)
(arsechx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)
⑤ (e^x)' = e^x
(a^x)' = (a^x)lna (ln为自然对数)
(Inx)' = 1/x(ln为自然对数)
(logax)' =x^(-1) /lna(a>0且a不等于1)
(x^1/2)'=[2(x^1/2)]^(-1)
(1/x)'=-x^(-2)
补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造灶培成歧义,要多加注意。关于三角求导“正正余负”(三角包含三隐袭唯角函数,也包含反三角函数正指正弦、正切与正割。)
(3)导数的四则运算法则(和、差、积、商):
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
② (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数
③ (sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
禅禅-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|<1)
(arcothx)'=1/(x^2-1) (|x|>1)
(arsechx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)
⑤ (e^x)' = e^x
(a^x)' = (a^x)lna (ln为自然对数)
(Inx)' = 1/x(ln为自然对数)
(logax)' =x^(-1) /lna(a>0且a不等于1)
(x^1/2)'=[2(x^1/2)]^(-1)
(1/x)'=-x^(-2)
补充一下。上面的公式是不可以代常数进去的,只能代函数,新学导数的人往往忽略这一点,造灶培成歧义,要多加注意。关于三角求导“正正余负”(三角包含三隐袭唯角函数,也包含反三角函数正指正弦、正切与正割。)
(3)导数的四则运算法则(和、差、积、商):
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/ v^2
展开全部
这里将列举五类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来):
基本导数公式
1.常函数(即常数)y=c(c为常数) y'=0
盯睁轿 2.幂函数y=x^n,y'=nx^(n-1)(n∈Q*) 熟记1/X的导数
3.指数函数(1)y=a^x,y'=a^xlna ;(2)熟记y=e^x y'=e^x唯一一个导函数为本身的函数
4.对数函数(1)y=logaX,y'=1/xlna (a>0且a不等于1,x>0) ;熟记y=lnx,y'=1/x
5.正弦函数y=(sinx )y'=cosx
6.余弦函数y=(cosx) y'=-sinx
7.正切函数y=(tanx) y'=1/(cosx)^2
8.余切函数y=(cotx) y'=-1/(sinx)^2
9.反正弦函数y=(arcsinx) y'=1/√1-x^2
10.反余弦函数y=(arccosx) y'=-1/√1-x^2
11.反正切函数y=(arctanx) y'=1/(1+x^2)
12.反余切函数y=(arccotx) y'=-1/(1+x^2)
为了便于记忆,有人整理出了以下凯肆口诀:
常为零,幂降次,对倒数(e为底时直接倒数,a为底时乘以lna),指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna);正变余,余变正,切割方(切函数是相应割函数(切函数的倒数)的平方),割乘切,反分式
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]·g'(x)‘f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量’
2.y=u/v,y'=(u'v-uv')/v^2
3. 原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数早销的一般情况,只能证其为整数Q。主要应用导数定义与N次方差公式。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
Δy=a^(x+Δx)-a^x=a^x(a^Δx-1)
Δy/Δx=a^x(a^Δx-1)/Δx
如果直接令Δx→0,是不能导出导函数的,必须设一个辅助的函数β=a^Δx-1通过换元进行计算。由设的辅助函数可以知道:Δx=loga(1+β)。
所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β
显然,当Δx→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把这个结果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx后得到limΔx→0Δy/Δx=a^xlna。
可以知道,当a=e时有y=e^x y'=e^x。
4.y=logax
Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x
Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x
因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有
limΔx→0Δy/Δx=logae/x。
也可以进一步用换底公式
limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1)
可以知道,当a=e时有y=lnx y'=1/x。
这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1)。
5.y=sinx
Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2)
Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2)
所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx/2)=cosx
6.类似地,可以导出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能较快捷地求得结果。
对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法。
y=x^n
由指数函数定义可知,y>0
等式两边取自然对数
ln y=n*ln x
等式两边对x求导,注意y是y对x的复合函数
y' * (1/y)=n*(1/x)
y'=n*y/x=n* x^n / x=n * x ^ (n-1)
幂函数同理可证
导数说白了它其实就是曲线一点斜率,函数值的变化率
上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在。
x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1.
建议先去搞懂什么是极限。极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸. 并且要认识到导数是一个比值。
基本导数公式
1.常函数(即常数)y=c(c为常数) y'=0
盯睁轿 2.幂函数y=x^n,y'=nx^(n-1)(n∈Q*) 熟记1/X的导数
3.指数函数(1)y=a^x,y'=a^xlna ;(2)熟记y=e^x y'=e^x唯一一个导函数为本身的函数
4.对数函数(1)y=logaX,y'=1/xlna (a>0且a不等于1,x>0) ;熟记y=lnx,y'=1/x
5.正弦函数y=(sinx )y'=cosx
6.余弦函数y=(cosx) y'=-sinx
7.正切函数y=(tanx) y'=1/(cosx)^2
8.余切函数y=(cotx) y'=-1/(sinx)^2
9.反正弦函数y=(arcsinx) y'=1/√1-x^2
10.反余弦函数y=(arccosx) y'=-1/√1-x^2
11.反正切函数y=(arctanx) y'=1/(1+x^2)
12.反余切函数y=(arccotx) y'=-1/(1+x^2)
为了便于记忆,有人整理出了以下凯肆口诀:
常为零,幂降次,对倒数(e为底时直接倒数,a为底时乘以lna),指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna);正变余,余变正,切割方(切函数是相应割函数(切函数的倒数)的平方),割乘切,反分式
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]·g'(x)‘f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量’
2.y=u/v,y'=(u'v-uv')/v^2
3. 原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数早销的一般情况,只能证其为整数Q。主要应用导数定义与N次方差公式。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
Δy=a^(x+Δx)-a^x=a^x(a^Δx-1)
Δy/Δx=a^x(a^Δx-1)/Δx
如果直接令Δx→0,是不能导出导函数的,必须设一个辅助的函数β=a^Δx-1通过换元进行计算。由设的辅助函数可以知道:Δx=loga(1+β)。
所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β
显然,当Δx→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把这个结果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx后得到limΔx→0Δy/Δx=a^xlna。
可以知道,当a=e时有y=e^x y'=e^x。
4.y=logax
Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x
Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x
因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有
limΔx→0Δy/Δx=logae/x。
也可以进一步用换底公式
limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1)
可以知道,当a=e时有y=lnx y'=1/x。
这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1)。
5.y=sinx
Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2)
Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2)
所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx/2)=cosx
6.类似地,可以导出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能较快捷地求得结果。
对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法。
y=x^n
由指数函数定义可知,y>0
等式两边取自然对数
ln y=n*ln x
等式两边对x求导,注意y是y对x的复合函数
y' * (1/y)=n*(1/x)
y'=n*y/x=n* x^n / x=n * x ^ (n-1)
幂函数同理可证
导数说白了它其实就是曲线一点斜率,函数值的变化率
上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在。
x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1.
建议先去搞懂什么是极限。极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸. 并且要认识到导数是一个比值。
参考资料: http://baike.baidu.com/view/30958.htm
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
a是一个常数,对数的真数,比如ln5 5就是真数
log对激岁数 lognm 这里的n是指底数,m是指真数,当底数为10时,简写成lgm 当底数为e(e = 2.718281828459
是一个常数 数学中成为超越数 经常要用到)时,简写成lnm (如上面给你举的那个例子ln5)
sin,cos,tan,sec,cot,csc分别为三角函数 分别表示正弦、余弦、正切、正割、余切、余割。 正弦余弦是一对 正切余切是一对 正割余割是一对 这六个是最基本的三角函数
arc是指的反三角函数 比如反正弦Sin30°=0.5
则arcsin0.5=30°(角度制)=π/猛腔6(弧度制)
反正切 反余弦 反余切等等枝铅衫都是同一道理
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
a是一个常数,对数的真数,比如ln5 5就是真数
log对激岁数 lognm 这里的n是指底数,m是指真数,当底数为10时,简写成lgm 当底数为e(e = 2.718281828459
是一个常数 数学中成为超越数 经常要用到)时,简写成lnm (如上面给你举的那个例子ln5)
sin,cos,tan,sec,cot,csc分别为三角函数 分别表示正弦、余弦、正切、正割、余切、余割。 正弦余弦是一对 正切余切是一对 正割余割是一对 这六个是最基本的三角函数
arc是指的反三角函数 比如反正弦Sin30°=0.5
则arcsin0.5=30°(角度制)=π/猛腔6(弧度制)
反正切 反余弦 反余切等等枝铅衫都是同一道理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
导数 cv
定义:f'(x)=y'=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x=dy/dx 几种常见函数的导数公式: ① C'=0(C 为常数函数) ② (x^n)'= nx^(n-1) (n∈Q); ③ (sinx)' = cosx ④ (cosx)' = - sinx ⑤ (e^x)' = e^x ⑥ (a^x)' = (a^x) * Ina (ln 为自然对数) ⑦ (Inx)' = 1/x (ln 为自然对数 X>0) ⑧ (log a x)'=1/(xlna) ,(a>0 且 a 不等于 1) ⑨(sinh(x))'=cosh(x) ⑩(cosh(x))'=sinh(x) (tanh(x))'=sech^2(x) (coth(x))'=-csch^2(x) (sech(x))'=-sech(x)tanh(x) (csch(x))'=-csch(x)coth(x) (arcsinh(x))'=1/sqrt(x^2+1) (arccosh(x))'=1/sqrt(x^2-1) (x>1) (arctanh(x))'=1/(1+x^2) (|x|<1) (arccoth(x))'=1/(1-x^2) (|x|>1) (chx)‘=shx, (ch 为双曲余弦函数) (shx) '=chx: (sh 为双曲正弦函数) (3) 导数的四则运算法则: ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2 (4)复合函数的导数 复合函数对自变量的导数,等于已知 函数对中间变量的导数,乘以中间变量对自变量的导数(链式法则) : d f[u(x)]/dx= (d f/du)*(du/dx) 。 [∫(上限 h(x) ,下限 g(x) f(x)dx]’=f[h(x)]·h'(x)- f[g ) (x)]·g'(x) 洛必达法则(L'Hospital): 是在一定条件下通过分子分母分别求导 再求极限来确定未定式值的方法。 设 (1)当 x→a 时,函数 f(x)及 F(x)都趋于零 (2)在点 a 的去心邻域内, f'(x)及 F'(x)都存在且 F'(x)≠0 (3)当 x→a 时 lim f'(x)/F'(x)存在(或 为无穷大),那么 x→a 时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当 x→悔答耐∞时, 函数 f(x)及 F(x)都趋于零 (2)当|x|>N 时 f'(x)及 F'(x)都存在,且 F'(x)≠0 (3)当 x→∞ 时 lim f'(x)/F'(x)存在(或为无穷大举配),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利 用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求 极限以前, 首先要检查是否满足 0/0 或∞/∞型, 否则滥用洛必达法则会出错。 当不存在时 (不 包括∞情形)碧春 ,就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限。比如 利用泰勒公式求解。 ②洛必达法则可连续多次使用,直到求出极限为止。 ③洛必 达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此 一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因 子用等价量替换等
定义:f'(x)=y'=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x=dy/dx 几种常见函数的导数公式: ① C'=0(C 为常数函数) ② (x^n)'= nx^(n-1) (n∈Q); ③ (sinx)' = cosx ④ (cosx)' = - sinx ⑤ (e^x)' = e^x ⑥ (a^x)' = (a^x) * Ina (ln 为自然对数) ⑦ (Inx)' = 1/x (ln 为自然对数 X>0) ⑧ (log a x)'=1/(xlna) ,(a>0 且 a 不等于 1) ⑨(sinh(x))'=cosh(x) ⑩(cosh(x))'=sinh(x) (tanh(x))'=sech^2(x) (coth(x))'=-csch^2(x) (sech(x))'=-sech(x)tanh(x) (csch(x))'=-csch(x)coth(x) (arcsinh(x))'=1/sqrt(x^2+1) (arccosh(x))'=1/sqrt(x^2-1) (x>1) (arctanh(x))'=1/(1+x^2) (|x|<1) (arccoth(x))'=1/(1-x^2) (|x|>1) (chx)‘=shx, (ch 为双曲余弦函数) (shx) '=chx: (sh 为双曲正弦函数) (3) 导数的四则运算法则: ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2 (4)复合函数的导数 复合函数对自变量的导数,等于已知 函数对中间变量的导数,乘以中间变量对自变量的导数(链式法则) : d f[u(x)]/dx= (d f/du)*(du/dx) 。 [∫(上限 h(x) ,下限 g(x) f(x)dx]’=f[h(x)]·h'(x)- f[g ) (x)]·g'(x) 洛必达法则(L'Hospital): 是在一定条件下通过分子分母分别求导 再求极限来确定未定式值的方法。 设 (1)当 x→a 时,函数 f(x)及 F(x)都趋于零 (2)在点 a 的去心邻域内, f'(x)及 F'(x)都存在且 F'(x)≠0 (3)当 x→a 时 lim f'(x)/F'(x)存在(或 为无穷大),那么 x→a 时 lim f(x)/F(x)=lim f'(x)/F'(x)。 再设 (1)当 x→悔答耐∞时, 函数 f(x)及 F(x)都趋于零 (2)当|x|>N 时 f'(x)及 F'(x)都存在,且 F'(x)≠0 (3)当 x→∞ 时 lim f'(x)/F'(x)存在(或为无穷大举配),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。 利 用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求 极限以前, 首先要检查是否满足 0/0 或∞/∞型, 否则滥用洛必达法则会出错。 当不存在时 (不 包括∞情形)碧春 ,就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限。比如 利用泰勒公式求解。 ②洛必达法则可连续多次使用,直到求出极限为止。 ③洛必 达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此 一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因 子用等价量替换等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
常兄拿用导数公式
1.y=c(c为常如旅数) y'=0
2.y=x^n y'渣尘凳=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=﹙logae﹚/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
1.y=c(c为常如旅数) y'=0
2.y=x^n y'渣尘凳=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=﹙logae﹚/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询