∫dx/(1+2cosx)

fin3574
高粉答主

2012-03-05 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134629

向TA提问 私信TA
展开全部
cosx = 1 - 2sin²(x/2)
2cosx = 2 - 4sin²(x/2)
∫ dx/(1 + 2cosx)
= ∫ dx/[3 - 4sin²(x/2)]
= ∫ dx/[3sin²(x/2) + 3cos²(x/2) - 4sin²(x/2)]
= ∫ dx/[3cos²(x/2) - sin²(x/2)]
= ∫ sec²(x/2)/[3 - tan²(x/2)] dx
= 2∫ 1/{[√3 - tan(x/2)][√3 + tan(x/2)]} dtan(x/2)
= 2/(2√3)∫ { [√3 + tan(x/2)] + [√3 - tan(x/2)] }/{ [√3 - tan(x/2)][√3 + tan(x/2)] } dtan(x/2)
= (1/√3)∫ {1/[√3 - tan(x/2) + 1/[√3 + tan(x/2)] } dtan(x/2)
= (1/√3) { - ln|√3 - tan(x/2)| + ln|√3 + tan(x/2)| } + C
= (1/√3)ln| [√3 + tan(x/2)]/[√3 - tan(x/2)] | + C

或使用万能代换:令u = tan(x/2),dx = 2du/(1 + u²),cosx = (1 - u²)/(1 + u²)
∫ dx/(1 + 2cosx) = ∫ 1/[1 + 2(1 - u²)/(1 + u²)] • 2/(1 + u²) • du
= 2∫ du/(3 - u²) = 2∫ du/[(√3 - u)(√3 + u)]
= (2/2√3)∫ [(√3 + u) + (√3 - u)]/[(√3 - u)(√3 + u)] du
= (1/√3)[- ln|√3 - u| + ln|√3 + u|] + C
= (1/√3)ln| (√3 + u)/(√3 - u) | + C
= (1/√3)ln| [√3 + tan(x/2)]/[√3 - tan(x/2)] | + C,实际上跟上面的步骤一样,但用u替代了tan(x/2)
leipole
2024-11-29 广告
上海雷普电气有限公司(以下简称雷普电气)是一家集研发、生产、销售、服务为一体的科技型企业。一直以来,公司秉承“以科技改变生活,为社会创造美好”的理念,旗下“低压电源为主导” 的电联接件及接口模块系列、继电耦合系列、风扇及过滤器系列、机床控制... 点击进入详情页
本回答由leipole提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式