第四小题 求极限 怎么求

lu_zhao_long
2013-12-17 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1.3万
采纳率:79%
帮助的人:2698万
展开全部

最笨的办法是把积分计算出来:

  1. ∫t^(3/2)*dt = 2/5*t^(5/2)|0 ~ x^2 = 2/5* x^5

  2. ∫t(t-sint)*dt = ∫t^2*dt - ∫t*sint*dt

    = 1/3*t^3 - [t*(-cost) - ∫(-cost)*dt]

    = 1/3*t^3 + t*cost - sint | 0 ~ x

    = 1/3*x^3 + x*cosx - sinx

再求极限:

lim (2/5*x^5)/(1/3*x^3 + x*cosx - sinx)

=lim(2/5* 5 * x^4) /(1/3 * 3 *x^2 + cosx - x*sinx - cosx)    注:0/0 型极限,使用罗必截法则。

=lim(2*x^4)/(x^2 - x*sinx)    注:还是 0/0 型极限,继续使用罗必塔法则

=lim (2*4*x^3)/(2x - sinx - x*cosx)    注:还是 0/0 型极限,继续使用罗必塔法则

=lim (8*3*x^2)/(2-cosx - cosx + x*sinx)

=lim(24*x^2)/(2-2cosx + x*sinx)    注:还是 0/0 型极限,继续使用罗必塔法则

=lim(24*2*x)/(2*sinx + sinx + x*cosx)

=lim(48x)/(3sinx + x*cosx)    注:还是 0/0 型极限,继续使用罗必塔法则

=lim 48/(3cosx + cosx - x*sinx)

=lim 48/(4cosx - x*sinx)

=lim 48/(4*1 - 0*0)

=12

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式