已知椭圆的方程为x^2/5+y^2=1,过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A,B两点。
已知椭圆的方程为x^2/5+y^2=1,过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A,B两点。1.设点M(m,0)是线段OF上的一个动点,且(向量MA+向量MB)...
已知椭圆的方程为x^2/5+y^2=1,过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A,B两点。 1.设点M(m,0)是线段OF上的一个动点,且(向量MA+向量MB)垂直向量AB,求m的取值范围 2点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点N的坐标,若不存在,请说明理由 第一问x1-x2怎么算啊?
最后算完和答案不一样啊 求过程 第一问答案是0<m<8/5 第二问(5/2,0) 展开
最后算完和答案不一样啊 求过程 第一问答案是0<m<8/5 第二问(5/2,0) 展开
3个回答
展开全部
(1)设直线l:y=k(x-2),A(x1,y1),B(x2,y2)
与方程联立的(1+5k^2)x^2+20k^2x+20k^2-5=0
得x1+x2=20k^2/(1+5k^2)
x1x2=(20k^2-5)/(1+5k^2)
因为向量AB=向量MA-向量MB
又因为(MA+MB)·(MA-MB)=0
所以 向量MA的模=向量MB的模
所以MA=MB
所以(x1-m)^2+y1^2=(x2-m)^2+y2^2
整理得2(x1-x2)(x1+x2)=5m(x1-x2)
因为与坐标轴不垂直,所以x1-x2≠0
所以2* 20k^2/(1+5k^2)=5m
解得m=8k^2/(1+5k^2)
= 8/(1/k^2+5)
1/k^2取极限为0
所以0<m<8/5
(2)C(x1,-y1)
所以直线BC的方程为 (x-x1)/(x2-x1)=(y+y1)/(y2+y1)
所以 x-x1=(y+y1)(x2-x1)/(y2+y1)
设存在N(n,0),则N在直线BC上
所以 n=x1+y1(x2-x1)/(y2+y1)
x1=(-20k^2+根号△)/(2+10k^2)
同理求y1
x2-x1=-根号里((x1+x2)^2-2x1x2)
y2+y1=-4k/(1+5k^2)
求的n=5/2
与方程联立的(1+5k^2)x^2+20k^2x+20k^2-5=0
得x1+x2=20k^2/(1+5k^2)
x1x2=(20k^2-5)/(1+5k^2)
因为向量AB=向量MA-向量MB
又因为(MA+MB)·(MA-MB)=0
所以 向量MA的模=向量MB的模
所以MA=MB
所以(x1-m)^2+y1^2=(x2-m)^2+y2^2
整理得2(x1-x2)(x1+x2)=5m(x1-x2)
因为与坐标轴不垂直,所以x1-x2≠0
所以2* 20k^2/(1+5k^2)=5m
解得m=8k^2/(1+5k^2)
= 8/(1/k^2+5)
1/k^2取极限为0
所以0<m<8/5
(2)C(x1,-y1)
所以直线BC的方程为 (x-x1)/(x2-x1)=(y+y1)/(y2+y1)
所以 x-x1=(y+y1)(x2-x1)/(y2+y1)
设存在N(n,0),则N在直线BC上
所以 n=x1+y1(x2-x1)/(y2+y1)
x1=(-20k^2+根号△)/(2+10k^2)
同理求y1
x2-x1=-根号里((x1+x2)^2-2x1x2)
y2+y1=-4k/(1+5k^2)
求的n=5/2
展开全部
设斜率K,A点坐标(A,C),B点坐标(B,D)直线L为Y=KX-2K联立椭圆方程可得X^2+5K^2X^2+20K^2-20K^2X-5=0可得A+B=20K^2/(1+5K^2),同理C+D=-4k^2/(1+5k^2).应为(向量MA+向量MB)垂直向量AB,所以向量MA=向量MB,所以得M=8K^2/(5K^2+1)在除以k^2就好了
追问
向量MA=向量MB 不一定吧?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x1-x2=(x1+x2)^2-4x1x2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询