
证明 等比数列中,m+n=p+q=2k,则aman=apaq=a^2k
1个回答
2014-05-20
展开全部
解:
设公比为t。
aman=[a1t^(m-1)][a1t^(n-1)]
=a1^2t^(m+n-2)
=a1^2t^(2k-2)
=[a1t^(k-1)]^2
=(ak)^2
apaq=[a1t^(p-1)][a1t^(q-1)]
=a1^2t^(p+q-2)
=a1^2t^(2k-2)
=[a1t^(k-1)]^2
=(ak)^2
aman=apaq=(ak)^2
设公比为t。
aman=[a1t^(m-1)][a1t^(n-1)]
=a1^2t^(m+n-2)
=a1^2t^(2k-2)
=[a1t^(k-1)]^2
=(ak)^2
apaq=[a1t^(p-1)][a1t^(q-1)]
=a1^2t^(p+q-2)
=a1^2t^(2k-2)
=[a1t^(k-1)]^2
=(ak)^2
aman=apaq=(ak)^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询