2017-07-14 · 知道合伙人教育行家
原理:
设两数为a、b(a>b),用gcd(a,b)表示a,b的最大公约数,r=a (mod b) 为a除以b的余数,k为a除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。
第一步:令c=gcd(a,b),则设a=mc,b=nc
第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c
第三步:根据第二步结果可知c也是r的因数
第四步:可以断定m-kn与n互质(假设m-kn=xd,n=yd (d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)cd,b=nc=ycd,则a与b的一个公约数cd>c,故c非a与b的最大公约数,与前面结论矛盾),因此c也是b与r的最大公约数。
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕。
以上步骤的操作是建立在刚开始时r≠0的基础之上的。即m与n亦互质。
解释:
辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法, 其可追溯至公元前300年前。
来源:
设两数为a、b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q......r1(0≤r1)。若r1=0,则(a,b)=b;若r1≠0,则再用b除以r1,得b÷r1=q......r2 (0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r1除以r2,……如此下去,直到能整除为止。其最后一个余数为0的除数即为(a, b)的最大公约数。
例如:a=25,b=15,a/b=1......10,b/10=1......5,10/5=2.......0,最后一个余数为0d的除数就是5, 5就是所求最大公约数。
举例说明:
不定方程为326x+78y=4,求出一组整数解x,y
求(326,78)的算式为:
326=4*78+14
14=326-4*78
78=5*14+8
8=78-5*14
14=1*8+6
6=14-1*8
8=1*6+2
2=8-1*6
6=3*2
所以
2=8-6=8-(14-8)
=2*8-14=2*(78-5*14)-14
=2*78-11*14=2*78-11*(326-4*78)
=46*78-11*326
即2=(-11)*326+46*78
所以4=(-22)*326+92*78
所以x = - 22, y = 92是不定方程326x+78y=4的一组解。
设两数为a、b(a>b),用gcd(a,b)表示a,b的最大公约数,r=a (mod b) 为a除以b的余数,k为a除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。
第一步:令c=gcd(a,b),则设a=mc,b=nc
第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c
第三步:根据第二步结果可知c也是r的因数
第四步:可以断定m-kn与n互质(假设m-kn=xd,n=yd (d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)cd,b=nc=ycd,则a与b的一个公约数cd>c,故c非a与b的最大公约数,与前面结论矛盾),因此c也是b与r的最大公约数。
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕。
以上步骤的操作是建立在刚开始时r≠0的基础之上的。即m与n亦互质。
一、辗转相除法(欧几里得算法)1、定义:所谓辗转相除法,就是对于给定的两个数,用较大的数除以较小的数。若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时较小的数就是原来两个数的最大公约数。2、步骤:(以求8251和6105的最大公约数的过程为例)第一步用两数中较大的数除以较小的数,求得商和余数8251=6105×1+2146结论:8251和6105的公约数就是6105和2146的公约数,求8251和6105的最大公约数,只要求出6105和2146的公约数就可以了。第二步对6105和2146重复第一步的做法6105=2146×2+1813同理6105和2146的最大公约数也是2146和1813的最大公约数。完整的过程8251=6105×1+21466105=2146×2+18132146=1813×1+333例:用辗转相除法求225和135的最大公约数225=135×1+90135=90×1+4590=45×2显然45是90和45的最大公约数,也就是225和135的最大公约数思考:从上面的两个例子中可以看出计算的规律是什么?1813=333×5+148333=148×2+37148=37×4+0S1:用大数除以小数显然37是148和37的最大公约数,S2:除数变成被除数,余数变成除数也就是8251和6105的最大公约S3:重复S1,直到余数为0数辗转相除法是一个反复执行直到余数等于0才停止的步骤,这实际上是一个循环结构。m=n×q+r用程序框图表示出右边的过程8251=6105×1+21466105=2146×2+18132146=1813×1+333r=mMODnm=nn=r
2013-10-27
辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法, 其可追溯至前300年。它首次出现于欧几里德的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。它并不需要把二数作质因子分解。
[编辑] 算法
辗转相除法是利用以下性质来确定两个正整数 a 和 b 的最大公因子的:
1. 若 r 是 a ÷ b 的余数, 则
gcd(a,b) = gcd(b,r)
2. a 和其倍数之最大公因子为 a。
另一种写法是:
1. a ÷ b,令r为所得余数(0≤r<b)
若 r = 0,算法结束;b 即为答案。
2. 互换:置 a←b,b←r,并返回第一步。
[编辑] 虚拟码
这个算法可以用递归写成如下:
function gcd(a, b) {
if (a 不整除 b)
return gcd(b, a mod b);
else
return a;
}
或纯使用循环:
function gcd(a, b) {
define r as integer;
while b ≠ 0 {
r := a mod b;
a := b;
b := r;
}
return a;
}
其中“a mod b”是指取 a ÷ b 的余数。
例如,123456 和 7890 的最大公因子是 6, 这可由下列步骤看出:
a b a mod b
123456 7890 5106
7890 5106 2784
5106 2784 2322
2784 2322 462
2322 462 12
462 12 6
12 6 0
只要可计算余数都可用辗转相除法来求最大公因子。这包括多项式、复整数及所有欧几里德定义域(Euclidean domain)。
辗转相除法的运算速度为 O(n2),其中 n 为输入数值的位数