因式分解 a^4+4^4+(a-4)^4
1个回答
2013-12-16
展开全部
x=a y=a-4 x-y=4a^4+4^4+(a-4)^4=x^4+(x-y)^4+y^4=x^4+y^4-2x^2y^2+(x-y)^4+2x^2y^2=(x^2-y^2)^2+(x-y)^4+2(xy)^2=[(x+y)(x-y)]^2+(x-y)^4+2(xy)^2=(x-y)^2[(x+y)^2+(x-y)^2]+2(xy)^2=2(x-y)^2(x^2+y^2-2xy+2xy)+2(xy)^2=2[(x-y)^4+2xy(x-y)^2+(xy)^2]=2[(x-y)^2+xy]^2=2[4^2+a(a-4)]^2=2(a^2-4a+16)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询