数列求解。。。
1个回答
展开全部
a(n)>0.
6s(n) = [a(n)]^2 + 3a(n) + 2,
6a(1) = 6s(1) = [a(1)]^2 + 3a(1) + 2,
0 = [a(1)]^2 - 3a(1) + 2 = [a(1)-2][a(1)-1],
a(1)=1或a(1)=2.
6s(n+1) = [a(n+1)]^2 + 3a(n+1) + 2,
6a(n+1) = 6s(n+1)-6s(n) = [a(n+1)]^2 + 3a(n+1) - [a(n)]^2 - 3a(n),
0 = [a(n+1)]^2 - [a(n)]^2 - 3a(n+1) - 3a(n) = [a(n+1)+a(n)][a(n+1)-a(n) - 3],
因 a(n+1)+a(n)>0.
所以
0 = a(n+1)-a(n)-3,
a(n+1) = a(n)+3,
{a(n)}是首项为a(1)=1或a(1)=2,公差为3的等差数列 。
a(n) = 1 + 3(n-1) = 3n-2
或 a(n) = 2 + 3(n-1) = 3n-1.
若 a(n) = 3n-2,则a(1)=1,a(2)=4,a(3)=7. 4^2 - 1*7 = 16 - 7 = 9 = [a(2)]^2 - a(1)a(3),与 a(1),a(2),a(3)是等比数列的前三项矛盾 。
因此,只能有,
a(n) = 3n-1.
验证如下:a(1)= 2,a(2)=5,a(3)=8.
啊,也矛盾啊 。[a(2)]^2 - a(1)a(3) = 5^2 - 2*8 = 25-16 =9,也与a(1),a(2),a(3)是等比数列的前三项矛盾。
楼主。。。。题目有问题吧???
6s(n) = [a(n)]^2 + 3a(n) + 2,
6a(1) = 6s(1) = [a(1)]^2 + 3a(1) + 2,
0 = [a(1)]^2 - 3a(1) + 2 = [a(1)-2][a(1)-1],
a(1)=1或a(1)=2.
6s(n+1) = [a(n+1)]^2 + 3a(n+1) + 2,
6a(n+1) = 6s(n+1)-6s(n) = [a(n+1)]^2 + 3a(n+1) - [a(n)]^2 - 3a(n),
0 = [a(n+1)]^2 - [a(n)]^2 - 3a(n+1) - 3a(n) = [a(n+1)+a(n)][a(n+1)-a(n) - 3],
因 a(n+1)+a(n)>0.
所以
0 = a(n+1)-a(n)-3,
a(n+1) = a(n)+3,
{a(n)}是首项为a(1)=1或a(1)=2,公差为3的等差数列 。
a(n) = 1 + 3(n-1) = 3n-2
或 a(n) = 2 + 3(n-1) = 3n-1.
若 a(n) = 3n-2,则a(1)=1,a(2)=4,a(3)=7. 4^2 - 1*7 = 16 - 7 = 9 = [a(2)]^2 - a(1)a(3),与 a(1),a(2),a(3)是等比数列的前三项矛盾 。
因此,只能有,
a(n) = 3n-1.
验证如下:a(1)= 2,a(2)=5,a(3)=8.
啊,也矛盾啊 。[a(2)]^2 - a(1)a(3) = 5^2 - 2*8 = 25-16 =9,也与a(1),a(2),a(3)是等比数列的前三项矛盾。
楼主。。。。题目有问题吧???
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询