双曲线的渐近线公式是什么?
双曲线渐近线方程公式:
方程:y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线标准方程 x^2/a^2-y^2/b^2 =1中的1为零即得渐近线方程。
扩展资料:
渐近线特点:
无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。
当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。
y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程
当焦点在x轴上时 双曲线渐近线的方程是y=[+(-)b/a]x
当焦点在y轴上时 双曲线渐近线的方程是y=[+(-)a/b]x
参考资料:百度百科-双曲线渐近线方程
2024-08-07 广告
y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)(a:双曲线的实半轴,b是虚半轴长)
几何性质
(1)范围:|x|≥a,y∈R.
(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称.
(3)顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c2=a2+b2.与椭圆不同.
(4)渐近线:双曲线特有的性质,方程y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线
扩展资料:
注意事项
1.与双曲线 - =1共渐近线的双曲线系方程可表示为 - =λ(λ≠0且λ为待定常数)
2.与椭圆x^2/a^2+y^2/b^2 =1(a>b>0)共焦点的曲线系方程可表示为x^2/(a^2-λ) -y^2/(λ-b^2) =1(λ0时为椭圆, b2<λ<a2时为双曲线)
2.双曲线的第二定义
平面内到定点F(c,0)的距离和到定直线l:x=+(-)a2/c 的距离之比等于常数e=c/a (c>a>0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p= ,与椭圆相同.
3.焦半径( - =1,F1(-c,0)、F2(c,0)),点p(x0,y0)在双曲线 - =1的右支上时,|pF1|=ex0+a,|pF2|=ex0-a;
P在左支上时,则 |PF1|=ex1+a |PF2|=ex1-a.
参考资料:百度百科---双曲线渐近线
推荐于2018-03-12
1/a^2 - y^2/(b^2*x^2) = 1/x^2
两边同时乘以b^2并移项:
y^2/x^2 = b^2/a^2 - b^2/x^2
当x,y都远离坐标原点时, b^2/x^2趋向于0,则(y/x)^2趋向于(b/a)^2
渐近线斜率就是b/a或-b/a
拓展
平面内,到两个定点的距离之差的绝对值为常数2a(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点,两焦点之间的距离称为焦距,用2c表示。
定义2:平面内,到给定一点及一直线的距离之比为常数e(e>1,即为双曲线的离心率;定点不在定直线上)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。
定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行也不通过圆锥面顶点,且与圆锥面的两个圆锥都相交时,交线称为双曲线。
定义4:在平面直角坐标系中,二元二次方程F(x,y)=Ax2+Bxy+Cy2+Dx+Ey+F=0满足以下条件时,其图像为双曲线。
1、A、B、C不都是零。
2、Δ=B2-4AC>0。
或
令双曲线标准方程 x²/a²-y²/b² =1中的1为零即得渐近线方程.