计算二重积分∫D∫xydxdy,其中D是由y=x,y=x^3所确定的区域
2013-12-11
展开全部
X区域:
D:x = 2,y = 1,y = x ==> 1 ≤ x ≤ 2,1 ≤ y ≤ x
∫∫_D xy dxdy
= ∫(1→2) dx ∫(1→x) xy dy
= ∫(1→2) [xy²/2]:(1→x) dx
= ∫(1→2) (x³/2 - x/2) dx
= [x⁴/8 - x²/4]:(1→2)
= (2 - 1) - (1/8 - 1/4)
= 9/8
D:x = 2,y = 1,y = x ==> 1 ≤ x ≤ 2,1 ≤ y ≤ x
∫∫_D xy dxdy
= ∫(1→2) dx ∫(1→x) xy dy
= ∫(1→2) [xy²/2]:(1→x) dx
= ∫(1→2) (x³/2 - x/2) dx
= [x⁴/8 - x²/4]:(1→2)
= (2 - 1) - (1/8 - 1/4)
= 9/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询