在数学中什么是收敛

生活达人小罗
高能答主

2020-11-04 · 生活中的问题,我来为您解答。
生活达人小罗
采纳数:985 获赞数:394688

向TA提问 私信TA
展开全部

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

一般的级数u1+u2+...+un+...,它的各项为任意级数。如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,则称级数Σun绝对收敛。如果级数Σun收敛,而Σ∣un∣发散,则称级数Σun条件收敛。

扩展资料

数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。发散级数(英语:Divergent Series)指(按柯西意义下)不收敛的级数。如级数  和  ,也就是说该级数的部分和序列没有一个有穷极限。

如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数

北京埃德思远电气技术咨询有限公司
2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
匿名用户
2013-12-21
展开全部
数学分析中的收敛:1.收敛数列令为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|an-A|<b,则数列存在极限A,数列被称为收敛。非收敛的数列被称作“发散”(divergence)数列。
  2.收敛函数定义方式与数列的收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
  收敛的定义方式很好的体现了数学分析的精神实质。
  快速收敛:收敛 对于路由协议,网络上的路由器在一条路径不能使用时必须经历决定替代路径的过程,是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。这个过程即称为收敛。收敛时间指从网络发生变化开始直到所有路由器识别到变化并针对该变化作出适应为止的这段时间。收敛慢的路由算法会造成路径循环或网络中断。
  收敛的本解释:
  收起
  绝对收敛
  一般的级数u1+u2+...+un+...
  它的各项为任意级数。
  如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,
  则称级数Σun绝对收敛
  经济学中的收敛,分为绝对收敛和条件收敛
  绝对收敛,指的是,不论条件如何,穷国比富国收敛更快。
  条件收敛,指的是技术给定,其他条件一样的话,人均产出低的国家,相对于人均产出高的国家,有着较高的人均产出增长率,一个国家的经济在远离均衡状态时,比接近均衡状态时,增长速度快。
  条件收敛
  一般的级数u1+u2+...+un+...
  它的各项为任意级数。
  如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,
  则称级数Σun绝对收敛。
  如果级数Σun收敛,
  而Σ∣un∣发散,
  则称级数Σun条件收敛。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
典渟司空嘉言
2019-10-13 · TA获得超过3639个赞
知道大有可为答主
回答量:3138
采纳率:33%
帮助的人:226万
展开全部
这是一个高等数学上的概念。就是说,当一个数列在n趋于无穷大的时候,这个数列趋于某一个定值,那么就说这个数列收敛。比如,an=(1/2)^n这个数列,当n趋于无穷时,an趋于0,那么这个数列是收敛数列。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-21
展开全部
在数学中收敛一词有许多含义,不同概念的收敛意义是不同的,但它们基本上都以极限的收敛为基础例如数列极限的收敛是指:给定一个无穷数列{a(n)},称这个数列是收敛的,如果存在一个常数A,使得对于任意给定的正数ε>0,都存在一个整数N,使得n>N时,a(n)-A的绝对值小于ε。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-12-21
展开全部
就是函数的值有极限的就是咯
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式