1)有一道题“先化简再求值:{x
2)若x>1,m=x-1/x,n=x/x+1,试比较m,n的大小关系(3)分解因式:a^5-1/2a^3b^2+1/16ab^4(4)若(4a-1)/(a+2)(a-10...
2)若x>1,m=x-1/x,n=x/x+1,试比较m,n的大小关系 (3)分解因式:a^5-1/2a^3b^2+1/16ab^4 (4)若(4a-1)/(a+2)(a-10=m/(a+2)+n/(a-1),求m,n的值
展开
展开全部
2) m-n=(x-1)/x-x/(x+1)=(x^2-1-x^2)/[x(x+1)]=-1/[x(x+1)]
∵x>1
∴x(x+1)>0
m-n<0
m<n
3) a^5-1/2a^3b^2+1/16ab^4=a(a^4-1/2a^2b^2+1/16b^2)=a(a-1/4b)^2
4) (4a-1)/[(a+2)(a-10)]
=m/(a+2)+n/(a-1)
=[m(a-1)+n(a+2)]/[(a+2)(a-10)]
=[(m+n)a-m+2n]/[(a+2)(a-10)]
m+n=4,-m+2n=-1
m=3,n=1
∵x>1
∴x(x+1)>0
m-n<0
m<n
3) a^5-1/2a^3b^2+1/16ab^4=a(a^4-1/2a^2b^2+1/16b^2)=a(a-1/4b)^2
4) (4a-1)/[(a+2)(a-10)]
=m/(a+2)+n/(a-1)
=[m(a-1)+n(a+2)]/[(a+2)(a-10)]
=[(m+n)a-m+2n]/[(a+2)(a-10)]
m+n=4,-m+2n=-1
m=3,n=1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.已知x+y=5,2x-y=1,化简xy(x+y的平方)-y的平方(xy-x)+2x(x-y的平方),并求它们的值。
3.3ab-4ab+8ab-7ab+ab=______.
4.7x-(5x-5y)-y=______.
5.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.
6.-7x2+6x+13x2-4x-5x2=______.
7.2y+(-2y+5)-(3y+2)=______.
11.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.
12.2a-(3a-2b+2)+(3a-4b-1)=______.
13.-6x2-7x2+15x2-2x2=______.
14.2x-(x+3y)-(-x-y)-(x-y)=______.
16.2x+2y-[3x-2(x-y)]=______.
17.5-(1-x)-1-(x-1)=______.
18.( )+(4xy+7x2-y2)=10x2-xy.
19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.
21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.
22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.
23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.
25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.
26.-(2x2-y2)-[2y2-(x2+2xy)]=______.
27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.
28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.
29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.
30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).
31.3a-(2a-3b)+3(a-2b)-b=______.
32.化简代数式x-[y-2x-(x+y)]等于______.
33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.
34.3x-[y-(2x+y)]=______.
35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.
36.已知x≤y,x+y-|x-y|=______.
37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.
38.4a2n-an-(3an-2a2n)=______.
39.若一个多项式加上-3x2y+2x2-3xy-4得
2x2y+3xy2-x2+2xy,
则这个多项式为______.
40.-5xm-xm-(-7xm)+(-3xm)=______.
41.当a=-1,b=-2时,
[a-(b-c)]-[-b-(-c-a)]=______.
43.当a=-1,b=1,c=-1时,
-[b-2(-5a)]-(-3b+5c)=______.
44.-2(3x+z)-(-6x)+(-5y+3z)=______.
45.-5an-an+1-(-7an+1)+(-3an)=______.
46.3a-(2a-4b-6c)+3(-2c+2b)=______.
48.9a2+[7a2-2a-(-a2+3a)]=______.
50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.
3.3ab-4ab+8ab-7ab+ab=______.
4.7x-(5x-5y)-y=______.
5.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.
6.-7x2+6x+13x2-4x-5x2=______.
7.2y+(-2y+5)-(3y+2)=______.
11.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.
12.2a-(3a-2b+2)+(3a-4b-1)=______.
13.-6x2-7x2+15x2-2x2=______.
14.2x-(x+3y)-(-x-y)-(x-y)=______.
16.2x+2y-[3x-2(x-y)]=______.
17.5-(1-x)-1-(x-1)=______.
18.( )+(4xy+7x2-y2)=10x2-xy.
19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.
21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.
22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.
23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.
25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.
26.-(2x2-y2)-[2y2-(x2+2xy)]=______.
27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.
28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.
29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.
30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).
31.3a-(2a-3b)+3(a-2b)-b=______.
32.化简代数式x-[y-2x-(x+y)]等于______.
33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.
34.3x-[y-(2x+y)]=______.
35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.
36.已知x≤y,x+y-|x-y|=______.
37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.
38.4a2n-an-(3an-2a2n)=______.
39.若一个多项式加上-3x2y+2x2-3xy-4得
2x2y+3xy2-x2+2xy,
则这个多项式为______.
40.-5xm-xm-(-7xm)+(-3xm)=______.
41.当a=-1,b=-2时,
[a-(b-c)]-[-b-(-c-a)]=______.
43.当a=-1,b=1,c=-1时,
-[b-2(-5a)]-(-3b+5c)=______.
44.-2(3x+z)-(-6x)+(-5y+3z)=______.
45.-5an-an+1-(-7an+1)+(-3an)=______.
46.3a-(2a-4b-6c)+3(-2c+2b)=______.
48.9a2+[7a2-2a-(-a2+3a)]=______.
50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:先利用平方差公式,完全平方公式,多项式的乘法把代数式化简,求得结果为a2+11,再谈论无论a取正值还是负值,都不影响结果的正确性.
解答:解:(2a+1)(2a-1)+(a-2)2-4(a+1)(a-2),
=4a2-1+a2-4a+4-4a2+4a+8,
=a2+11;
当x=-2时,a2+11=15;
当x=2时,a2+11=15.
所以计算结果是准确的.
点评:本题考查了平方差公式,完全平方公式,多项式的乘法,熟练掌握公式和运算法则是解题的关键,要注意互为相反数的偶数次方相等.
解答:解:(2a+1)(2a-1)+(a-2)2-4(a+1)(a-2),
=4a2-1+a2-4a+4-4a2+4a+8,
=a2+11;
当x=-2时,a2+11=15;
当x=2时,a2+11=15.
所以计算结果是准确的.
点评:本题考查了平方差公式,完全平方公式,多项式的乘法,熟练掌握公式和运算法则是解题的关键,要注意互为相反数的偶数次方相等.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询