设O为坐标原点,F为抛物线y^2=4x的焦点,A为抛物线上一点,若向量OA*向量AF=-4,则点A的坐标是?
两个向量相乘小于0,证明是钝角,那么应该A点的横坐标在(0,1)内啊能不能解释一下:两个向量相乘小于0,证明是钝角,那么应该A点的横坐标在(0,1)内啊,为什么不对...
两个向量相乘小于0,证明是钝角,那么应该A点的横坐标在(0,1)内啊
能不能解释一下:两个向量相乘小于0,证明是钝角,那么应该A点的横坐标在(0,1)内啊,为什么不对 展开
能不能解释一下:两个向量相乘小于0,证明是钝角,那么应该A点的横坐标在(0,1)内啊,为什么不对 展开
2个回答
展开全部
【解】
由题意知:F(1,0)
设点A的坐标为(x,y),则向量OA=(x,y),向量AF=(1-x,-y).
∵向量OA*向量AF=-4
∴x(1-x)-y^2=-4,即-x^2+x-4x=-4,x^2+3x-4=0
解得:x1=1,x2=-4(抛物线开口向右,故舍去)
此时y=±2,即点A的坐标是(1,2)或(1,-2).
【说明】
向量OA*向量AF=-4,说明向量OA与向量AF的夹角为钝角。
但向量的夹角是指把两个向量的起点放在同一位置时形成的,
你画出图形可以看一下,向量OA与向量AF的夹角应该是指
线段AF与线段OA延长线之间的夹角,那是个钝角,
则∠OAF就它的补角,所以∠OAF是锐角。
由题意知:F(1,0)
设点A的坐标为(x,y),则向量OA=(x,y),向量AF=(1-x,-y).
∵向量OA*向量AF=-4
∴x(1-x)-y^2=-4,即-x^2+x-4x=-4,x^2+3x-4=0
解得:x1=1,x2=-4(抛物线开口向右,故舍去)
此时y=±2,即点A的坐标是(1,2)或(1,-2).
【说明】
向量OA*向量AF=-4,说明向量OA与向量AF的夹角为钝角。
但向量的夹角是指把两个向量的起点放在同一位置时形成的,
你画出图形可以看一下,向量OA与向量AF的夹角应该是指
线段AF与线段OA延长线之间的夹角,那是个钝角,
则∠OAF就它的补角,所以∠OAF是锐角。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询