什么是因数?
因数也叫约数,定义:整数a除以整数b(b≠0) 的商正好是整数而没有余数,我们就说b是a的因数。0不是0的因数。
在大学之前,"约数"一词所指的一般只限于正约数。约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。
例如:2X6=12,2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数。
3X(-9)=-27,3和-9都是-27的因数。-27是3和-9的倍数。
相关性质:
1、合数:除了1和它本身还有其它正因数。
2、1只有正因数1,所以它既不是质数也不是合数。
3、若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
4、公因数只有1的两个非零自然数,叫做互质数。
将需要求最大公因数的两个数A,B分别分解质因数,再从中找出A、B公有的质因数,把这些公有的质因数相乘,即得A、B的最大公约数。
一、解答如下
1、基本定义:因数,数学名词。假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称c为a、b的倍数。在研究因数和倍数时,不考虑0。
2、事实上因数一般定义在整数上:设A为整数,B为非零整数,若存在整数Q,使得A=QB,则称B是A的因数,记作B|A。但是也有的作者不要求B≠0。
例如:2X6=12,2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数。
3X(-9)=-27,3和-9都是-27的因数。-27是3和-9的倍数。
二、拓展资料:因数的相关性质
1、相关性质
整除:若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),记作b|a。
质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身外两个因数,无法被其他自然数整除的数)。
合数:除了1和它本身还有其它正因数。
1只有正因数1,所以它既不是质数也不是合数。
若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
公因数只有1的两个非零自然数,叫做互质数。
1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。
所有不为零的整数都是0的因数。(还有争议)
2是最小的质数。
4是最小的合数。
2、公因数
定义:两个或多个整数公有的因数叫做它们的公因数。
两个或多个整数的公因数里最大的那一个叫做它们的最大公因数。
推论:1是任意个数的整数之公因数。
两个成倍数关系的非零自然数之间,小的那一个数就是这两个数的最大公因数。
(参考资料:百度百科:因数)
因数是指能够整除一个数的数,也就是说,如果一个数a能够被另一个数b整除,那么b就是a的因数。因数也可以被称为约数,因数是能够整除一个数的数,一个数a能够被另一个数b整除,那么b就是a的因数。例如,6能够被2整除,2是6的因数。
每个数都有至少两个因数,即1和它本身,5的因数是1和5,一个数除了1和它本身以外没有其他因数,这个数就是质数。例如,7是质数,它只有1和7两个因数,一个数的因数可以是正数、负数或零。例如,-4是4的因数,4能够被-4整除,一个数有多个因数,因数可以用因数分解法来表示。因数分解法是将一个数分解成若干个质数的乘积的方法,例如,12可以分解为2×2×3,其中2和3都是质数。
因数性质:
1、整除:若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记作b|a。
2、质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身两个因数外,无法被其他自然数整除的数)。
3、合数:除了1和它本身还有其它正因数。
4、1只有正因数1,所以它既不是质数也不是合数。
5、若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
6、公因数只有1的两个非零自然数,叫做互质数。
7、1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。
8、所有不为零的整数都是0的因数(还有争议)。
9、2是最小的质数。
10、4是最小的合数。
因数在数学中有着广泛的应用,例如在整数论、代数、数论等领域中都有着重要的地位,因数还可以用来求一个数的倍数。例如,如果一个数的因数是2和3,那么这个数的倍数就是2×3=6、2×2×3=12、2×2×2×3=24等,因数还可以用来判断一个数的性质,例如一个数的因数个数是奇数,那么这个数就是一个完全平方数,因数还可以用来求最大公约数和最小公倍数,最大公约数是指两个数中最大的公因数,最小公倍数是指两个数中最小的公倍数。
在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。
拓展资料:
一、事实上因数一般定义在整数上:设A为整数,B为非零整数,若存在整数Q,使得A=QB,则称B是A的因数,记作B|A。但是也有的作者不要求B≠0。
二、例如:2X6=12,2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数。
3X(-9)=-27,3和-9都是-27的因数。-27是3和-9的倍数。
三、一般而言,整数A乘以整数B得到整数C,整数A与整数B都称做整数C的因数,反之,整数C为整数A的倍数,也为整数B的倍数。
四、相关性质
1、整除:若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),记作b|a。
2、质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身外两个因数,无法被其他自然数整除的数)。
3、合数:除了1和它本身还有其它正因数。
4、1只有正因数1,所以它既不是质数也不是合数。
5、若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
6、公因数只有1的两个非零自然数,叫做互质数。
7、1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。
8、所有不为零的整数都是0的因数。(还有争议)
9、2是最小的质数。
10、4是最小的合数。
参考资料:百度百科 因数 网页链接