如何证明

 我来答
噶来呀
2014-06-20 · TA获得超过2901个赞
知道答主
回答量:1995
采纳率:80%
帮助的人:260万
展开全部
设BE和AF交于点H,连接OH,
在等边三角形△ABD中,E、F分别是AD、BD的中点,
所以H为重心, AH/AF=2/3,
又O为AC中点,G是OC的中点,
所以 AO/AG=2/3,
在三角形AFG中, AH/AF=2/3=AO/AG,
所以HO∥FG,
HO∥平面BOE,
所以FG∥平面BOE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式