广大网友们,帮我找200道二元一次方程组应用题,然后还要200道二元一次不等式应用题。
广大网友们,帮我找200道二元一次方程组应用题,简单的更好。然后还要200道二元一次不等式应用题,也是简单的更好。工作量有点大,我也是穷人,没那么多积分来挥霍...
广大网友们,帮我找200道二元一次方程组应用题,简单的更好。然后还要200道二元一次不等式应用题,也是简单的更好。工作量有点大,我也是穷人,没那么多积分来挥霍,帮帮忙把
展开
2个回答
2012-03-18
展开全部
应用题,
1、有两种药水,一种浓度为60%,另一种浓度为90%,现要配制浓度为70%的药水300克,问各种各需多少克?
2、 甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,则乙盒球就是甲盒球数的6倍,若从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?
3、 一个两位数字,个位数字比十位数字大5,如果把这两数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.
4、 甲、乙两人在东西方向的公路上行走,甲在乙的西边300米,若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟后相遇,问甲、乙两人的速度是多少?
5、 某铁桥长1 000米,一列火车从桥上通过,从车头到桥到车尾离桥共用一分钟时间,整列火车完全在桥上的时间为40秒钟,求火车车身的总长和速度.
6、 某牛奶加工厂现有100吨鲜牛奶准备加工后上市销售,该工厂的加工能力是,如果制成奶片每天可加工鲜奶10吨,如果制成酸奶每天可加工鲜奶30吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部加工完毕.该厂应安排几天制奶片,几天制酸奶,才能使任务在4天内正好完成?如果制成奶片销售每吨奶可获利2 000元,制成酸奶销售每吨奶可获利1 200元,那么该厂出售这些加工后的鲜牛奶共可获利多少元?
7、 某酒店客房部有三人间、双人间客房,收费数据如下表.
普通(元/间/天) 豪华(元/间/天)
三人间 150 300
双人间 140 400
为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?
8、 甲乙两人以不变的速度在环形路上跑步,相向而行每隔两分钟相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑的快,求甲乙每分钟跑多少圈?
9、我区某学校原计划向内蒙察右旗地区的学生捐赠3 500册图书,实际共捐赠了4 125册,其中初中学生捐赠了原计划的 ,高中学生捐赠了原计划的 ,问初中学生和高中学生各比原计划多捐赠了图书多少册?
10、 某学校现有校舍面积20 000m ,计划拆除部分旧校舍,改建新教学楼,使校舍面积增加30%,若建造新教学楼的面积为拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,新教学楼面积是多少?(单位为m )
作物品种 每公顷需劳动力 每公顷需投入资金
水稻 4人 1万元
棉花 8人 1万元
蔬菜 5人 2万元
11、某农场有300名职工,耕种51公顷土地,计
划种植水稻、棉花和蔬菜,已知种植各作物每公顷
所需劳动力人数及投入的资金如下表:
已知该农场计划投入资金67万元,应该怎样安排
这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?
12、 某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元.若要求每种广告播放不少于2次.问:⑴两种广告的播放次数有几种安排方式?
⑵电视台选择哪种方式播放收益较大?
13、 某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润可达4 500元;经精加工后销售,每吨利润涨至7 500元.当地一家农工商公司收购这种蔬菜140吨,该公司的加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部加工或加工完毕,为此公司研制了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成.你认为选择哪种方案获利最多?为什么?
14、二果问价:九百九十九文钱,甜果苦果买一千。甜果九个十一文,苦果七个四文钱。
试问甜苦果几个,又问各该几个钱。 (注:文钱,也称文,古代的一种货币单位)
15、一列快车长168米,一列慢车长184米,如果两车相同而行,从相遇到离开需4秒;如果同向而行,从快车追及慢车到离开需16秒,求两车的速度。
16、某船的载重为260吨,容积为1000 m3.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m3,乙种货物每吨体积为2m3,若要充分利用这艘船的载重与容积,甲、乙两种货物应各装多少吨?(设装运货物时无任何空隙)
17、某市为更有效地利用水资源,制定了用水标准:如果一户三口之家每月用水量不超过Mm3,按每m3水1.30元计算;如果超过Mm3,超过部分按每m3水2.90元收费,其余仍按每m3水1.30元计算.小红一家三人,1月份共用水12m3,支付水费22元.问该市制定的用水标准M为多少?小红一家超标使用了多少m3的水?
18、某乐园的门票价格规定如下表所列.某校初一(1)、(2)两个班共104人去游长风乐园其中(1)班人数较少,不到50人,(2)班人数较多,有50多人.经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱.问两班各有多少名学生?
购票人数 1——50人 51——100人 100人以上
每人门票价 13元 11元 9元
1、打折前,买60件 商品和30件 商品用了1080元,买50件 商品和10件 商品用了840元,打折后,买50件 商品和50件 商品用了960元,比不打折少花多少钱?
2、甲、乙两人各有书若干本,如果甲从乙处拿来10本,那么甲拥有的书是乙所剩书的5倍;如果乙从甲处拿来10本,那么乙所有的书与甲所剩的书相等,问甲、乙两人原来各有几本书?
3、 张老师去文具店给美术小组的30名学生买铅笔和橡皮,到了商店后发现,若给全组每人都买2支铅笔和1块橡皮,则要按零售价计算,共需付款30元;若给全组每人都买3支铅笔和2块橡皮,则可按批发价,共需付款40.5元.已知铅笔每支批发价比零售价低0.05元,橡皮每块批发价比零售价低0.1元,求这家文具店每支铅笔和每块橡皮的批发价是多少?
4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生.
⑴求平均每分钟一道正门和一道侧门各可以通过多少名学生?
⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.
5、 汽车在相距70km的甲、乙两地之间往返行驶,因为行程中有一坡度均匀的小山,该汽车从甲地到乙地需要2小时30分钟,而从乙地回到甲地需要2小时48分钟,已知汽车在平地每小时行30km,上坡路每小时行20km,下坡路每小时行40km,求从甲地到乙地的行程中,平路、上坡路、下坡路各是多少?
6、 某中学组织一批学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车租金每辆220元,60座客车租金为每辆300元,试问:
⑴这批学生人数是多少?原计划租用45座客车多少辆?
⑵若租用同一种车,要使每位学生都有座位,怎样租用更合算?
7、某旅社在黄金旅游期间为一旅游团体安排住宿,若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住了4人,且空两间宿舍,求该团体有多少人和宿舍间数.
8、 有甲、乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?
9、 李明与王云分别从 、 两地相向而行,若两人同时出发,则经过80分钟两人相遇;若李明出发60分钟后王云再出发,则经过40分钟两人相遇,问李明与王云单独走完
全程各需多少小时?
10、 在一次足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某队在足球比赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?
11、 东风农场的两块试验田,去年共产花生470kg.改用良种后,今年共产花生523kg,已知第一块田的产量比去年增产16%,第二块田的产量比去年增产10%,这两块田改良种前每块田产量分别为多少千克?今年每块田各增产多少千克?
12、某种口服液礼品盒有大盒、小盒两种包装,现在知道3大盒、4小盒共装了108瓶;2大盒、3小盒共装了76瓶,现在有一个人一共买了6大盒、6小盒,问他一共买了多少瓶?
13、学校书法兴趣小组准备到文具店购买 、 两种类型的毛笔,文具店的销售方法是:一次性购买 型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买 型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.
(1)如果全组共有20名同学,若每人各买1支 型毛笔和2支 型毛笔,共支付145元;若每人各买2支 型毛笔和1支 型毛笔,共支付129元.这家文具店的 、 两种类型毛笔的零售价各是多少?
(2)为了促销,该文具店对 型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少支,一律按原零售价(即(1)中所求得的 型毛笔的零售价)的 出售.现要购买 型毛笔 支( ),在新的销售方法和原来的销售方法中,应选择哪种方法购买花钱较少?并说明理由.
14、某市根据信息产业部调整“因特网”的资费要求,规定如下:上“因特网”的费用为电话费0.22元/3分钟。上网费为每月不超过a小时,按4元/时计算;超过a小时部分按8元/时计算。现在网民李先生有一个月的上网费用为736元,上网时间为80小时,(1)你知道该市规定时间a为多少?李先生上网超过a多少小时?(2)该市还有一种上网方式宽带网,收费标准如下:电话费0.22元/3分钟,上网费为388元/半年,一次交安装费240元。若李先生每月上网时间均为80小时,他改上宽带网合适吗?
15、某学校社会实践小分队走访100户家庭,发现一般洗衣水的浓度以0.2%——0.5%为合适,即100千克洗衣水里含200——500克的洗衣粉比较合适。因为这时表面活性最大,去污效果最好。现有一个洗衣缸可容纳15千克洗衣水(包括衣服),已知其中衣服重4千克,所用洗衣水的浓度为0.4%,已放了两匙洗衣粉,(1匙约0.02千克)。问还需加多少千克洗衣粉,添加多少千克水比较合适?
16、〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的 ,若从树上飞下去一只,则树上、树下的鸽子就一样多了。”你知道树上、树下各有多少只鸽子吗?
17、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
不等式应该是一元一次的把,二元的没
1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
2、解放军某连队在一次执行任务时,准备将战士编成8个组,如果每组人数比预定人数多1名,那么战士人数将超过100人,则预定每组分配战士的人数要超过多少人?
3、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只?
5、 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车?
6、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1) 如果有x间宿舍,那么可以列出关于x的不等式组:
(2) 可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?
(积分问题)
1、某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不答不给分。某学生有1道未答。那么他至少答对几道题才能及格?
2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对多少道题目?
3、一次知识竞赛共有15道题。竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题?
4、在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?
(比较问题)
1、某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。假设这两位家长至带领多少名学生去旅游,他们应该选择甲旅行社?
(行程问题)
1、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?
2、爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?
3、王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?
4、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?
(车费问题)
1、出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租 汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程超过多少km?
2、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需要7元车费),超过3km,每增加1km,加收2.4元(不足1km按1km计)。某人乘这种出租车从A地到B地共支付车费19元。设此人从A地到B地经过的路程最多是多少km?
(工程问题)
1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?
2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。B型抽水机比A型抽水机每分钟约多抽多少吨水?
3.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?
4、某车间有组装1200台洗衣机的任务,若最多用8天完成,每天至少要组装多少台?
(增减问题)
1、一根长20cm的弹簧,一端固定,另一端挂物体。在弹簧伸长后的长度不超过30cm的限度内,每挂1㎏质量的物体,弹簧伸长0.5cm.求弹簧所挂物体的最大质量是多少?
2、几个同学合影,每人交0.70元,一张底片0.68元,扩印一张相片0.5元,每人分一张,将收来的钱尽量用完,这张照片上的同学至少有多少个?
3、某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝,几个小时以后,蜡烛的长度不足10㎝?
(销售问题)
1 、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
(1)试求该商品的进价和第一次的售价;
(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?
2.水果店进了某中水果1t,进价是7元/kg。售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?
3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?
2、某电影院暑假向学生优惠开放,每张票2元。另外,每场次还可以售出每张5元的普通票300张,如果要保持每场次票房收入不低于2000元,那么平均每场次至少应出售学生优惠票多少张?
4.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。问刻录这批电脑光盘,该校如何选择,才能使费用较少?
5.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?
6.学校图书馆准备购买定价分别为8元和14元的杂志和小说共80本,计划用钱在750元到850元之间(包括750元和850元),那么14元一本的小说最少可以买多少本?
方案选择与设计
1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:
原料
维生素C及价格 甲种原料 乙种原料
维生素C/(单位/千克) 600 100
原料价格/(元/千克) 8 4
现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,
(1)设需用 千克甲种原料,写出 应满足的不等式组。
(2)按上述的条件购买甲种原料应在什么范围之内?
2.红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种工人多少时,可使每月所付的工资最少?此时每月工资为多少元?
3.某工厂接受一项生产任务,需要用10米长的铁条作原料。现在需要截取3米长的铁条81根,4米长的铁条32根,请你帮助设计一下怎样安排截料方案,才能使用掉的10米长的铁条最少?最少需几根?
4.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利4.8%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%作保管费,问:
(1)当该批产品投入资金是多少元时,方案一和方案二的获利是一样的?
(2)按所需投入资金的多少讨论方案一和方案二哪个获利多。
5.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该
园林除保留原来的售票方法外,还推出了一种“购买年票”的方法。年票分为A、B、C三种:A年票每张120元,持票进入不用再买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C类年票每张40元,持票进入园林时,购买每张3元的门票。
(1) 如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
(2) 求一年中进入该园林至少多少时,购买A类年票才比较合算。
6.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495员。如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨?
不够在问我拿把
1、有两种药水,一种浓度为60%,另一种浓度为90%,现要配制浓度为70%的药水300克,问各种各需多少克?
2、 甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,则乙盒球就是甲盒球数的6倍,若从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?
3、 一个两位数字,个位数字比十位数字大5,如果把这两数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.
4、 甲、乙两人在东西方向的公路上行走,甲在乙的西边300米,若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟后相遇,问甲、乙两人的速度是多少?
5、 某铁桥长1 000米,一列火车从桥上通过,从车头到桥到车尾离桥共用一分钟时间,整列火车完全在桥上的时间为40秒钟,求火车车身的总长和速度.
6、 某牛奶加工厂现有100吨鲜牛奶准备加工后上市销售,该工厂的加工能力是,如果制成奶片每天可加工鲜奶10吨,如果制成酸奶每天可加工鲜奶30吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部加工完毕.该厂应安排几天制奶片,几天制酸奶,才能使任务在4天内正好完成?如果制成奶片销售每吨奶可获利2 000元,制成酸奶销售每吨奶可获利1 200元,那么该厂出售这些加工后的鲜牛奶共可获利多少元?
7、 某酒店客房部有三人间、双人间客房,收费数据如下表.
普通(元/间/天) 豪华(元/间/天)
三人间 150 300
双人间 140 400
为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?
8、 甲乙两人以不变的速度在环形路上跑步,相向而行每隔两分钟相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑的快,求甲乙每分钟跑多少圈?
9、我区某学校原计划向内蒙察右旗地区的学生捐赠3 500册图书,实际共捐赠了4 125册,其中初中学生捐赠了原计划的 ,高中学生捐赠了原计划的 ,问初中学生和高中学生各比原计划多捐赠了图书多少册?
10、 某学校现有校舍面积20 000m ,计划拆除部分旧校舍,改建新教学楼,使校舍面积增加30%,若建造新教学楼的面积为拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,新教学楼面积是多少?(单位为m )
作物品种 每公顷需劳动力 每公顷需投入资金
水稻 4人 1万元
棉花 8人 1万元
蔬菜 5人 2万元
11、某农场有300名职工,耕种51公顷土地,计
划种植水稻、棉花和蔬菜,已知种植各作物每公顷
所需劳动力人数及投入的资金如下表:
已知该农场计划投入资金67万元,应该怎样安排
这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?
12、 某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元.若要求每种广告播放不少于2次.问:⑴两种广告的播放次数有几种安排方式?
⑵电视台选择哪种方式播放收益较大?
13、 某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润可达4 500元;经精加工后销售,每吨利润涨至7 500元.当地一家农工商公司收购这种蔬菜140吨,该公司的加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部加工或加工完毕,为此公司研制了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成.你认为选择哪种方案获利最多?为什么?
14、二果问价:九百九十九文钱,甜果苦果买一千。甜果九个十一文,苦果七个四文钱。
试问甜苦果几个,又问各该几个钱。 (注:文钱,也称文,古代的一种货币单位)
15、一列快车长168米,一列慢车长184米,如果两车相同而行,从相遇到离开需4秒;如果同向而行,从快车追及慢车到离开需16秒,求两车的速度。
16、某船的载重为260吨,容积为1000 m3.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m3,乙种货物每吨体积为2m3,若要充分利用这艘船的载重与容积,甲、乙两种货物应各装多少吨?(设装运货物时无任何空隙)
17、某市为更有效地利用水资源,制定了用水标准:如果一户三口之家每月用水量不超过Mm3,按每m3水1.30元计算;如果超过Mm3,超过部分按每m3水2.90元收费,其余仍按每m3水1.30元计算.小红一家三人,1月份共用水12m3,支付水费22元.问该市制定的用水标准M为多少?小红一家超标使用了多少m3的水?
18、某乐园的门票价格规定如下表所列.某校初一(1)、(2)两个班共104人去游长风乐园其中(1)班人数较少,不到50人,(2)班人数较多,有50多人.经估算,如果两班都以班为单位分别购票,则一共应付1240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱.问两班各有多少名学生?
购票人数 1——50人 51——100人 100人以上
每人门票价 13元 11元 9元
1、打折前,买60件 商品和30件 商品用了1080元,买50件 商品和10件 商品用了840元,打折后,买50件 商品和50件 商品用了960元,比不打折少花多少钱?
2、甲、乙两人各有书若干本,如果甲从乙处拿来10本,那么甲拥有的书是乙所剩书的5倍;如果乙从甲处拿来10本,那么乙所有的书与甲所剩的书相等,问甲、乙两人原来各有几本书?
3、 张老师去文具店给美术小组的30名学生买铅笔和橡皮,到了商店后发现,若给全组每人都买2支铅笔和1块橡皮,则要按零售价计算,共需付款30元;若给全组每人都买3支铅笔和2块橡皮,则可按批发价,共需付款40.5元.已知铅笔每支批发价比零售价低0.05元,橡皮每块批发价比零售价低0.1元,求这家文具店每支铅笔和每块橡皮的批发价是多少?
4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生.
⑴求平均每分钟一道正门和一道侧门各可以通过多少名学生?
⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.
5、 汽车在相距70km的甲、乙两地之间往返行驶,因为行程中有一坡度均匀的小山,该汽车从甲地到乙地需要2小时30分钟,而从乙地回到甲地需要2小时48分钟,已知汽车在平地每小时行30km,上坡路每小时行20km,下坡路每小时行40km,求从甲地到乙地的行程中,平路、上坡路、下坡路各是多少?
6、 某中学组织一批学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车租金每辆220元,60座客车租金为每辆300元,试问:
⑴这批学生人数是多少?原计划租用45座客车多少辆?
⑵若租用同一种车,要使每位学生都有座位,怎样租用更合算?
7、某旅社在黄金旅游期间为一旅游团体安排住宿,若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住了4人,且空两间宿舍,求该团体有多少人和宿舍间数.
8、 有甲、乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?
9、 李明与王云分别从 、 两地相向而行,若两人同时出发,则经过80分钟两人相遇;若李明出发60分钟后王云再出发,则经过40分钟两人相遇,问李明与王云单独走完
全程各需多少小时?
10、 在一次足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某队在足球比赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?
11、 东风农场的两块试验田,去年共产花生470kg.改用良种后,今年共产花生523kg,已知第一块田的产量比去年增产16%,第二块田的产量比去年增产10%,这两块田改良种前每块田产量分别为多少千克?今年每块田各增产多少千克?
12、某种口服液礼品盒有大盒、小盒两种包装,现在知道3大盒、4小盒共装了108瓶;2大盒、3小盒共装了76瓶,现在有一个人一共买了6大盒、6小盒,问他一共买了多少瓶?
13、学校书法兴趣小组准备到文具店购买 、 两种类型的毛笔,文具店的销售方法是:一次性购买 型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买 型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.
(1)如果全组共有20名同学,若每人各买1支 型毛笔和2支 型毛笔,共支付145元;若每人各买2支 型毛笔和1支 型毛笔,共支付129元.这家文具店的 、 两种类型毛笔的零售价各是多少?
(2)为了促销,该文具店对 型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少支,一律按原零售价(即(1)中所求得的 型毛笔的零售价)的 出售.现要购买 型毛笔 支( ),在新的销售方法和原来的销售方法中,应选择哪种方法购买花钱较少?并说明理由.
14、某市根据信息产业部调整“因特网”的资费要求,规定如下:上“因特网”的费用为电话费0.22元/3分钟。上网费为每月不超过a小时,按4元/时计算;超过a小时部分按8元/时计算。现在网民李先生有一个月的上网费用为736元,上网时间为80小时,(1)你知道该市规定时间a为多少?李先生上网超过a多少小时?(2)该市还有一种上网方式宽带网,收费标准如下:电话费0.22元/3分钟,上网费为388元/半年,一次交安装费240元。若李先生每月上网时间均为80小时,他改上宽带网合适吗?
15、某学校社会实践小分队走访100户家庭,发现一般洗衣水的浓度以0.2%——0.5%为合适,即100千克洗衣水里含200——500克的洗衣粉比较合适。因为这时表面活性最大,去污效果最好。现有一个洗衣缸可容纳15千克洗衣水(包括衣服),已知其中衣服重4千克,所用洗衣水的浓度为0.4%,已放了两匙洗衣粉,(1匙约0.02千克)。问还需加多少千克洗衣粉,添加多少千克水比较合适?
16、〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的 ,若从树上飞下去一只,则树上、树下的鸽子就一样多了。”你知道树上、树下各有多少只鸽子吗?
17、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
不等式应该是一元一次的把,二元的没
1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
2、解放军某连队在一次执行任务时,准备将战士编成8个组,如果每组人数比预定人数多1名,那么战士人数将超过100人,则预定每组分配战士的人数要超过多少人?
3、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。问有笼多少个?有鸡多少只?
5、 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。请问:有多少辆汽车?
6、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1) 如果有x间宿舍,那么可以列出关于x的不等式组:
(2) 可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?
(积分问题)
1、某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不答不给分。某学生有1道未答。那么他至少答对几道题才能及格?
2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对多少道题目?
3、一次知识竞赛共有15道题。竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。结果神箭队有2道题没答,飞艇队答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几道题?
4、在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?
(比较问题)
1、某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。假设这两位家长至带领多少名学生去旅游,他们应该选择甲旅行社?
(行程问题)
1、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?
2、爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?
3、王凯家到学校2.1千米,现在需要在18分钟内走完这段路。已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?
4、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?
(车费问题)
1、出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租 汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程超过多少km?
2、某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需要7元车费),超过3km,每增加1km,加收2.4元(不足1km按1km计)。某人乘这种出租车从A地到B地共支付车费19元。设此人从A地到B地经过的路程最多是多少km?
(工程问题)
1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?
2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。B型抽水机比A型抽水机每分钟约多抽多少吨水?
3.某工人计划在15天里加工408个零件,最初三天中每天加工24个,问以后每天至少要加工多少个零件,才能在规定的时间内超额完成任务?
4、某车间有组装1200台洗衣机的任务,若最多用8天完成,每天至少要组装多少台?
(增减问题)
1、一根长20cm的弹簧,一端固定,另一端挂物体。在弹簧伸长后的长度不超过30cm的限度内,每挂1㎏质量的物体,弹簧伸长0.5cm.求弹簧所挂物体的最大质量是多少?
2、几个同学合影,每人交0.70元,一张底片0.68元,扩印一张相片0.5元,每人分一张,将收来的钱尽量用完,这张照片上的同学至少有多少个?
3、某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝,几个小时以后,蜡烛的长度不足10㎝?
(销售问题)
1 、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
(1)试求该商品的进价和第一次的售价;
(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?
2.水果店进了某中水果1t,进价是7元/kg。售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?
3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?
2、某电影院暑假向学生优惠开放,每张票2元。另外,每场次还可以售出每张5元的普通票300张,如果要保持每场次票房收入不低于2000元,那么平均每场次至少应出售学生优惠票多少张?
4.某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。问刻录这批电脑光盘,该校如何选择,才能使费用较少?
5.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?
6.学校图书馆准备购买定价分别为8元和14元的杂志和小说共80本,计划用钱在750元到850元之间(包括750元和850元),那么14元一本的小说最少可以买多少本?
方案选择与设计
1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:
原料
维生素C及价格 甲种原料 乙种原料
维生素C/(单位/千克) 600 100
原料价格/(元/千克) 8 4
现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,
(1)设需用 千克甲种原料,写出 应满足的不等式组。
(2)按上述的条件购买甲种原料应在什么范围之内?
2.红星公司要招聘A、B两个工种的工人150人,A、B工种的工人的月工资分别为600和1000元,现要求B工种的人数不少于A工种人数的2倍,那么招聘A工种工人多少时,可使每月所付的工资最少?此时每月工资为多少元?
3.某工厂接受一项生产任务,需要用10米长的铁条作原料。现在需要截取3米长的铁条81根,4米长的铁条32根,请你帮助设计一下怎样安排截料方案,才能使用掉的10米长的铁条最少?最少需几根?
4.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利4.8%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%作保管费,问:
(1)当该批产品投入资金是多少元时,方案一和方案二的获利是一样的?
(2)按所需投入资金的多少讨论方案一和方案二哪个获利多。
5.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该
园林除保留原来的售票方法外,还推出了一种“购买年票”的方法。年票分为A、B、C三种:A年票每张120元,持票进入不用再买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C类年票每张40元,持票进入园林时,购买每张3元的门票。
(1) 如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
(2) 求一年中进入该园林至少多少时,购买A类年票才比较合算。
6.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495员。如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨?
不够在问我拿把
2012-03-14
展开全部
一、填空题:
1、用加减消元法解方程组,由①×2—②得 。
2、在方程=5中,用含的代数式表示为:= ,当=3时,= 。
3、在代数式中,当=-2,=1时,它的值为1,则= ;当=2,=-3时代数式的值是 。
4、已知方程组与有相同的解,则= ,= 。
5、若,则= ,= 。
6、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。
7、如果=3,=2是方程的解,则= 。
8、若是关于、的方程的一个解,且,则= 。
9、已知,那么的值是 。
二、选择题:
10、在方程组、、、、 、中,是二元一次方程组的有( )
A、2个 B、3个 C、4个 D、5个
11、如果是同类项,则、的值是( )
A、=-3,=2 B、=2,=-3
C、=-2,=3 D、=3,=-2
12、已知是方程组的解,则、间的关系是( )
A、 B、 C、 D、
13、若二元一次方程,,有公共解,则的取值为( )
A、3 B、-3 C、-4 D、4
14、若二元一次方程有正整数解,则的取值应为( )
A、正奇数 B、正偶数 C、正奇数或正偶数 D、0
15、若方程组的解满足>0,则的取值范围是( )
A、<-1 B、<1 C、>-1 D、>1
16、方程是二元一次方程,则的取值为( )
A、≠0 B、≠-1 C、≠1 D、≠2
17、解方程组时,一学生把看错而得,而正确的解是那么、、的值是( )
A、不能确定 B、=4,=5,=-2
C、、不能确定,=-2 D、=4,=7,=2
18、当时,代数式的值为6,那么当时这个式子的值为( )
A、6 B、-4 C、5 D、1
19、设A、B两镇相距千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为千米/小时、千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米。求、、。根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )
A、 B、 C、 D、
三、解方程组:
20、 21、
四、列方程(组)解应用题:
22、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。问王大伯一共获纯利多少元?
23、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:
甲同学说:“二环路车流量为每小时10000辆”;
乙同学说:“四环路比三环路车流量每小时多2000辆”;
丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;
请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?
五、综合题:
24、已知关于、的二元一次方程组的解满足二元一次方程,求的值。
25、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
参考答案:
一、填空题:
1、;2、,16;3、=-2,-7;4、=,=12;5、=,=;6、,;7、=7;8、-43;9、0
二、选择题:
题号
10
11
12
13
14
15
16
17
18
19
答案
B
B
D
D
A
C
C
B
B
A
三、解方程组:
20、 21、
四、列方程解应用题:
22、解:设王大伯种了亩茄子,亩西红柿,根据题意得:
解得:
∴王大伯共获纯利:2400×10+2600×15=6300(元)
答:王大伯共获纯利6300元。
23、解法一:设高峰时段三环路的车流量为每小时辆,则高峰时段四环路的车流量为每小时辆,根据题意得:
解这个方程得=11000
∴=13000
答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。
解法二:设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:
解得
答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。
五、结合题:
24、解:由题意得三元一次方程组:
化简得
①+②-③得:
④
②×2-①×3得:
⑤
由④⑤得:
∴
25、解:(1)解法一:设书包的单价为元,则随身听的单价为元
根据题意,得
解这个方程,得
答:该同学看中的随身听单价为360元,书包单价为92元。
解法二:设书包的单价为元,随身听的单价为元
根据题意,得
解这个方程组,得
答:该同学看中的随身听单价为360元,书包单价为92元。
(2)在超市A购买随身听与书包各一件需花费现金:
(元)
因为361.6<400,所以可以选择超市A购买。
在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共需花费现金:
360+2=362(元)
因为362<400,所以也可以选择在超市B购买。
因为362>361.6,所以在超市A购买更省钱。
选我的,我尽力了。O(∩_∩)O哈!
1、用加减消元法解方程组,由①×2—②得 。
2、在方程=5中,用含的代数式表示为:= ,当=3时,= 。
3、在代数式中,当=-2,=1时,它的值为1,则= ;当=2,=-3时代数式的值是 。
4、已知方程组与有相同的解,则= ,= 。
5、若,则= ,= 。
6、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。
7、如果=3,=2是方程的解,则= 。
8、若是关于、的方程的一个解,且,则= 。
9、已知,那么的值是 。
二、选择题:
10、在方程组、、、、 、中,是二元一次方程组的有( )
A、2个 B、3个 C、4个 D、5个
11、如果是同类项,则、的值是( )
A、=-3,=2 B、=2,=-3
C、=-2,=3 D、=3,=-2
12、已知是方程组的解,则、间的关系是( )
A、 B、 C、 D、
13、若二元一次方程,,有公共解,则的取值为( )
A、3 B、-3 C、-4 D、4
14、若二元一次方程有正整数解,则的取值应为( )
A、正奇数 B、正偶数 C、正奇数或正偶数 D、0
15、若方程组的解满足>0,则的取值范围是( )
A、<-1 B、<1 C、>-1 D、>1
16、方程是二元一次方程,则的取值为( )
A、≠0 B、≠-1 C、≠1 D、≠2
17、解方程组时,一学生把看错而得,而正确的解是那么、、的值是( )
A、不能确定 B、=4,=5,=-2
C、、不能确定,=-2 D、=4,=7,=2
18、当时,代数式的值为6,那么当时这个式子的值为( )
A、6 B、-4 C、5 D、1
19、设A、B两镇相距千米,甲从A镇、乙从B镇同时出发,相向而行,甲、乙行驶的速度分别为千米/小时、千米/小时,①出发后30分钟相遇;②甲到B镇后立即返回,追上乙时又经过了30分钟;③当甲追上乙时他俩离A镇还有4千米。求、、。根据题意,由条件③,有四位同学各得到第3个方程如下,其中错误的一个是( )
A、 B、 C、 D、
三、解方程组:
20、 21、
四、列方程(组)解应用题:
22、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。问王大伯一共获纯利多少元?
23、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:
甲同学说:“二环路车流量为每小时10000辆”;
乙同学说:“四环路比三环路车流量每小时多2000辆”;
丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;
请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?
五、综合题:
24、已知关于、的二元一次方程组的解满足二元一次方程,求的值。
25、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
参考答案:
一、填空题:
1、;2、,16;3、=-2,-7;4、=,=12;5、=,=;6、,;7、=7;8、-43;9、0
二、选择题:
题号
10
11
12
13
14
15
16
17
18
19
答案
B
B
D
D
A
C
C
B
B
A
三、解方程组:
20、 21、
四、列方程解应用题:
22、解:设王大伯种了亩茄子,亩西红柿,根据题意得:
解得:
∴王大伯共获纯利:2400×10+2600×15=6300(元)
答:王大伯共获纯利6300元。
23、解法一:设高峰时段三环路的车流量为每小时辆,则高峰时段四环路的车流量为每小时辆,根据题意得:
解这个方程得=11000
∴=13000
答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。
解法二:设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:
解得
答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。
五、结合题:
24、解:由题意得三元一次方程组:
化简得
①+②-③得:
④
②×2-①×3得:
⑤
由④⑤得:
∴
25、解:(1)解法一:设书包的单价为元,则随身听的单价为元
根据题意,得
解这个方程,得
答:该同学看中的随身听单价为360元,书包单价为92元。
解法二:设书包的单价为元,随身听的单价为元
根据题意,得
解这个方程组,得
答:该同学看中的随身听单价为360元,书包单价为92元。
(2)在超市A购买随身听与书包各一件需花费现金:
(元)
因为361.6<400,所以可以选择超市A购买。
在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共需花费现金:
360+2=362(元)
因为362<400,所以也可以选择在超市B购买。
因为362>361.6,所以在超市A购买更省钱。
选我的,我尽力了。O(∩_∩)O哈!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |