高一数学啊!
2个回答
展开全部
(1)∵ke1+e2和e1+ke2共线,
∴存在λ使ke1+e2=λ(e1+ke2),
即(k-λ)e1+(1-λk)e2=0.
∵e1与e2为非零不共线向量,
∴k-λ=0且1-λk=0.
∴k=±1.
(2)由(ke1+e2)•(e1+ke2)=0,
k|e1|2+(k2+1)e1•e2+k|e2|2=0,得
k×22+(k2+1)×2×3×cos60°+k×32=0
⇒4k+3k2+3+9k=0⇒3k2+13k+3=0,
∴k= (-13±√133)/6
∴存在λ使ke1+e2=λ(e1+ke2),
即(k-λ)e1+(1-λk)e2=0.
∵e1与e2为非零不共线向量,
∴k-λ=0且1-λk=0.
∴k=±1.
(2)由(ke1+e2)•(e1+ke2)=0,
k|e1|2+(k2+1)e1•e2+k|e2|2=0,得
k×22+(k2+1)×2×3×cos60°+k×32=0
⇒4k+3k2+3+9k=0⇒3k2+13k+3=0,
∴k= (-13±√133)/6
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询