3个回答
展开全部
取倒数
(x+2)/(x+3)=√3+√2+1
(x+2)/(x+3)-1=√3+√2+1-1
(x+2-x-3)/(x+3)=√3+√2
-1/(x+3)=√3+√2
原式
=[(x-3)/2(x-2)]/[(5/(x-2)-(x+2)]
=[(x-3)/2(x-2)]/[(5/(x-2)-(x+2)(x-2)/(x-2)]
=[(x-3)/2(x-2)]/[(5-x²+4)/(x-2)]
=[(x-3)/2(x-2)]/[-(x+3)(x-3)/(x-2)]
=-1/[2(x+3)]
=[-1/(x+3)]/2
=(√3+√2)/2
(x+2)/(x+3)=√3+√2+1
(x+2)/(x+3)-1=√3+√2+1-1
(x+2-x-3)/(x+3)=√3+√2
-1/(x+3)=√3+√2
原式
=[(x-3)/2(x-2)]/[(5/(x-2)-(x+2)]
=[(x-3)/2(x-2)]/[(5/(x-2)-(x+2)(x-2)/(x-2)]
=[(x-3)/2(x-2)]/[(5-x²+4)/(x-2)]
=[(x-3)/2(x-2)]/[-(x+3)(x-3)/(x-2)]
=-1/[2(x+3)]
=[-1/(x+3)]/2
=(√3+√2)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询