已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*),(1)求证数列{an+2}为等比数列;(2)若数列{bn}
已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*),(1)求证数列{an+2}为等比数列;(2)若数列{bn}满足bn=log2(an+2),Tn为数列...
已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*),(1)求证数列{an+2}为等比数列;(2)若数列{bn}满足bn=log2(an+2),Tn为数列{bnan+2}的前n项和,求证:Tn<32.
展开
1个回答
展开全部
(1)由Sn=2an-2n(n∈N*)可得sn-1=2an-1-2(n-1)(n≥2),
两式相减得:an=2an-1+2(n≥2),
∴an+2=2(an-1+2)(n≥2),
∴
=2(n≥2),
∴数列{an+2}为等比数列,又a1=2a1-2,故a1=2,
∴数列{an+2}为首项为4,公比为2的等比数列.
(2)由(1)可知an+2=4×2n-1,
∴bn=log2(4×2n?1)=log22n+1=n+1,
∴
=
,
∴Tn=
+
+
+…+
+
,①
∴
Tn=
+
+…+
+
,②
∴①-②得:
Tn=
+
+
+…+
两式相减得:an=2an-1+2(n≥2),
∴an+2=2(an-1+2)(n≥2),
∴
an+2 |
an?1+2 |
∴数列{an+2}为等比数列,又a1=2a1-2,故a1=2,
∴数列{an+2}为首项为4,公比为2的等比数列.
(2)由(1)可知an+2=4×2n-1,
∴bn=log2(4×2n?1)=log22n+1=n+1,
∴
bn |
an+2 |
n+1 |
2n+1 |
∴Tn=
2 |
22 |
3 |
23 |
4 |
24 |
n |
2n |
n+1 |
2n+1 |
∴
1 |
2 |
2 |
23 |
3 |
24 |
n |
2n+1 |
n+1 |
2n+2 |
∴①-②得:
1 |
2 |
2 |
22 |
1 |
23 |
1 |
24 |
1 |
2n+1 |