取一副三角尺按图①的方式拼接,固定三角尺ADC,将三角尺ABC绕点A按顺时针方向旋转一个大小为α的角得到

△ABC’。试问当α为多少度时,能使AB∥DC?2当旋转到③的位置时此时α又为多少度????????????????????????????????????... △ABC’。试问当α为多少度时,能使AB∥DC? 2当旋转到③的位置时此时α又为多少度???????????????????????????????????? 展开
潘沉默终结
2013-06-05 · TA获得超过718个赞
知道答主
回答量:230
采纳率:0%
帮助的人:44.4万
展开全部
(1)当α为多少度时,能使得图②中AB‖DC;
(2)当旋转至图③位置,此时α又为多少度图③中你能找出哪几对相似三角形,并求其中一对的相似比;
(3)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.
考点:相似三角形的判定与性质.专题:压轴题.分析:一副三角板的角度常识和相似三角形的判定定理及性质可求解.解答:解:(1)如图②,由题意∠CAC'=α,
要使AB‖DC,须∠BAC=∠ACD,
∴∠BAC=30°.
∴α=∠CAC'=∠BAC'-∠BAC=45°-30°=15°.
即α=15°时,能使得AB‖DC.(4分)

(2)易得α=45°时,可得图③,
此时,若记DC与AC',BC'分别交于点E,F,
则共有两对相似三角形:△BFC∽△ADC,△C'FE∽△ADE.(6分)
下求△BFC与△ADC的相似比:
在图③中,设AB=a,则易得 .
在图③中,设AB=a,则易得AC= a.
则BC=( -1)a,BC:AC=( -1)a: a=1:(2+ )
或(2- ):2.(8分)
注:△C'FE与△ADE的相似比为:C'F:AD=( - +1): 或( + -2):2.

(3)解法一:
当0°<α≤45°时,总有△EFC'存在.
∵∠EFC'=∠BDC+∠DBC',∠CAC'=α,∠FEC'=∠C+α,
∵∠EFC'+∠FEC'+∠C'=180°
∴∠BDC+∠DBC'+∠C+α+∠C'=180°(11分)
又∵∠C'=45°,∠C=30°
∴∠DBC'+∠CAC'+∠BDC=105°(13分)
解法二:
在图②中,BD分别交AC,AC'于点M,N,
由于在△AMN中,∠CAC'=α,∠AMN+∠CAC'+∠ANM=180°,
∴∠BDC+∠C+α+∠DBC'+∠C'=180°
∴∠BDC+30°+α+∠DBC'+45°=180°
∴∠BDC+α+∠DBC'=105°(11分)
在图③中,α=∠CAC'=45°
易得∠DBC'+∠BDC=60°
也有∠DBC'+∠CAC'+∠BDC=105°
综上,当0°<a≤45°时,总有∠DBC'+∠CAC'+∠BDC=105°.(13分)点评:此题主要考查了相似三角形的判定定理及一副三角板的固定角度.需注意的是利用相似性质的时候找准对应的角、对应边.
轩轩轩轩的轩
2013-06-17 · TA获得超过160个赞
知道答主
回答量:5
采纳率:0%
帮助的人:5.4万
展开全部
取一副三角板按图1拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.
试问:(1)当α为多少度时,能使得图2中AB∥DC;
(2)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.考点:旋转的性质;平行线的判定;三角形内角和定理.专题:探究型.分析:(1)要使AB∥DC,只要证出∠CAC′=15°即可.
(2)当0°<α≤45°时,总有△EFC′存在.根据∠EFC′=∠BDC+∠DBC′,又因为∠EFC′+∠FEC′+∠C′=180°,得到∠BDC+∠DBC′+∠C+α+∠C′=180°,则∠DBC′+∠CAC′+∠BDC=105°.解答:解:(1)由题意∠CAC′=α,
要使AB∥DC,须∠BAC=∠ACD,
∴∠BAC=30°,α=∠CAC′=∠BAC′-∠BAC=45°-30°=15°,
即α=15°时,能使得AB∥DC.

(2)连接BD,∠DBC′+∠CAC′+∠BDC的值的大小没有变化,总是105°,
当0°<α≤45°时,总有△EFC′存在.
∵∠EFC′=∠BDC+∠DBC′,∠CAC′=α,∠FEC′=∠C+α,
又∵∠EFC′+∠FEC′+∠C′=180°,
∴∠BDC+∠DBC′+∠C+α+∠C′=180°,
又∵∠C′=45°,∠C=30°,
∴∠DBC′+∠CAC′+∠BDC=105°.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式