已知正数a,b,c满足a+b+c=10a2+b2=c2,则ab的最大值为_____
1个回答
展开全部
∵
,
∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
=2c2+2ab+2c(a+b)
=2c2+2ab+2c(10-c)
=2ab+20c
=100;
∴ab=50-10c
=50-10(10-a-b)
=10(a+b)-50≥20
-50ab-20
+50≥0;
解得,
≤10-5
∴ab≤(10-5
)2=150-100
;
即ab的最大值为150-100
|
∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
=2c2+2ab+2c(a+b)
=2c2+2ab+2c(10-c)
=2ab+20c
=100;
∴ab=50-10c
=50-10(10-a-b)
=10(a+b)-50≥20
ab |
ab |
解得,
ab |
2 |
∴ab≤(10-5
2 |
2 |
即ab的最大值为150-100