(2013?扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠C
答案选择B
解:如图,连接BF,
在菱形ABCD中,∠BAC=1/2
∠BAD=1/2 ×80°=40°,∠BCF=∠DCF,BC=CD,
∠ABC=180°-∠BAD=180°-80°=100°,
∵EF是线段AB的垂直平分线,
∴AF=BF,∠ABF=∠BAC=40°,
∴∠CBF=∠ABC-∠ABF=100°-40°=60°,
∵在△BCF和△DCF中,
BC=CD∠BCF=∠DCFCF=CF ,
∴△BCF≌△DCF(SAS),
∴∠CDF=∠CBF=60°.
故选:B.
扩展资料:
性质
在一个平面内,有一组邻边相等的平行四边形是菱形。
性质:
菱形具有平行四边形的一切性质;
菱形的四条边都相等;
菱形的对角线互相垂直平分且平分每一组对角;
菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;
菱形是中心对称图形;
判定
在同一平面内,
一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四条边均相等的四边形是菱形;
对角线互相垂直平分的四边形;
两条对角线分别平分每组对角的四边形;
有一对角线平分一个内角的平行四边形;
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
菱形的一条对角线必须与x轴平行,另一条对角线与y轴平行。不满足此条件的几何学菱形在计算机图形学上被视作一般四边形。
参考资料:百度百科——菱形