已知数列{an}中,a1,a2,a3,a4…an…构成一个新数列:a1,(a2-a1),(a3-a2)…(an-an-1) 5

 我来答
E13400642886
2013-09-20
知道答主
回答量:19
采纳率:0%
帮助的人:10.4万
展开全部
a(1)=1=b(1),
b(n+1)=a(n+1)-a(n),
a(n+1)=b(n+1)+b(n)+...+b(2)+b(1)=[1-1/3^(n+1)]/[1-1/3]=(3/2)[1-1/3^(n+1)]
a(n)=(3/2)[1-1/3^n]
s(n)=a(1)+a(2)+...+a(n)=3n/2 - (3/2)[1/3 + 1/3^2 + ... + 1/3^n]
=3n/2 - (1/2)[1+1/3+...+1/3^(n-1)]
=3n/2-(1/2)[1-1/3^n]/(1-1/3)
=3n/2-(3/4)[1-1/3^n]
=3n/2-3/4+(1/4)/3^(n-1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-03-09
展开全部
问题是什么呢?
追问
新数列首项为1,公比为1/3的等比数列
这个数列{an}的通项公式是?
前n项和Sn?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式