已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.(1)若a=1,求曲线f(x)在点(1,f(1)

已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.(1)若a=1,求曲线f(x)在点(1,f(1))处的切线方程;(2)若a<0,求f(x)的单调... 已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.(1)若a=1,求曲线f(x)在点(1,f(1))处的切线方程;(2)若a<0,求f(x)的单调区间;(3)若a=-1,函数f(x)的图象与函数g(x)=13x3+12x2+m的图象有3个不同的交点,求实数m的取值范围. 展开
 我来答
黑白世界丿鬹l
推荐于2016-06-29 · TA获得超过171个赞
知道答主
回答量:189
采纳率:0%
帮助的人:50.5万
展开全部
∵f(x)=(ax2+x-1)ex,∴f′(x)=(2ax+1)ex+(ax2+x-1)ex=(ax2+2ax+x)ex
(1)当a=1时,f(1)=e,f′(1)=4e,故切线方程为y-e=4e(x-1),
化为一般式可得4ex-y-3e=0;
(2)当a<0时,f′(x)=(ax2+2ax+x)ex=[x(ax+2a+1)]ex
若a=?
1
2
,f′(x)=-
1
2
x2ex≤0,函数f(x)在R上单调递减,
a<?
1
2
,当x∈(-∞,-2-
1
a
)和(0,+∞)时,f′(x)<0,函数f(x)单调递减,
当x∈(-2-
1
a
,0)时,f′(x)>0,函数f(x)单调递增;
?
1
2
<a<0,当x∈(-∞,0)和(-2-
1
a
,+∞)时,f′(x)<0,函数f(x)单调递减,
当x∈(0,-2-
1
a
)时,f′(x)>0,函数f(x)单调递增;
(3)若a=-1,f(x)=(-x2+x-1)ex,可得f(x)-g(x)=(-x2+x-1)ex-
1
3
x3-
1
2
x2-m,
原问题等价于f(x)-g(x)的图象与x轴有3个不同的交点,
即y=m与y=(-x2+x-1)ex-
1
3
x3-
1
2
x2的图象有3个不同的交点,
构造函数F(x)=(-x2+x-1)ex-
1
3
x3-
1
2
x2
则F′(x)=(-2x+1)ex+(-x2+x-1)ex-x2-x
=(-x2-x)ex-x2-x=-x(x+1)(ex+1),令F′(x)=0,可解得x=0或-1,
且当x∈(-∞,-1)和(0,+∞)时,F′(x)<0,F(x)单调递减,
当x∈(-1,0)时,F′(x)>0,F(x)单调递增,
故函数F(x)在x=-1处取极小值F(-1)=?
3
e
?
1
6
,在x=0处取极大值F(0)=-1,
要满足题意只需∈(?
3
e
?
1
6
,-1)即可.
故实数m的取值范围为:(?
3
e
?
1
6
,-1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式