如图,已知:△ABC的外角∠CAG=120°,∠CAG的平分线AD与BC的延长线相交于点D,延长DA与.△ABC的外接圆

如图,已知:△ABC的外角∠CAG=120°,∠CAG的平分线AD与BC的延长线相交于点D,延长DA与.△ABC的外接圆交于点F,连接FB、FC,FC与AB相交于点E.(... 如图,已知:△ABC的外角∠CAG=120°,∠CAG的平分线AD与BC的延长线相交于点D,延长DA与.△ABC的外接圆交于点F,连接FB、FC,FC与AB相交于点E.(1)写出图中除△EFB∽△EAC、△EAF∽△ECB以外的4对相似三角形;(2)判断△FBC的形状,并说明理由. 展开
 我来答
六如冬Yd
2014-10-16 · 超过48用户采纳过TA的回答
知道答主
回答量:108
采纳率:0%
帮助的人:94.4万
展开全部
(1)∵∠AFC+∠D=60°,∠AFC+∠ACF=60°,
∴∠FCA=∠D.
∵∠AFC=∠CFD,
∴△FAC∽△FCD.
∵∠BAC=∠BCF=60°,∠ABC=∠CBE,
∴△BAC∽△BCE.
∵∠FAE=∠BCE,∠FEA=∠BEC,
∴△FEA∽△BEC,同理△EFB∽△EAC.
∴△FAE∽△BAC.
∵∠FAB=∠BFC=60°,∠FBA=∠EBF,
∴△FBA∽△EBF.
∵∠FAB=∠BAC=60°,∠FBA=∠EAC,
∴△FBA∽△ECA.
同理△DAC∽△DBF.

(2)△FBC为等边三角形,
∵∠CAG=1 20°,∠CAG的平分线AD与BC的延长线相交于点D,
∴∠GAD=∠DAC=60°,∠CAB=180°-∠GAC=60°.
∴∠BFC=∠BAC=60°,∠BAF=∠GAD=60°.
∴∠BCF=∠BAF=60°.
∴∠FBC=60°.
∴△FBC为等边三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式