线代中是不是不同的特征值对应的特征向量必是正交的

 我来答
教育小百科达人
推荐于2019-10-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:478万
展开全部

不是,如矩阵A=

[2 3]

[2 1],它的特征值为-1、4,对应的特征向量为(-1,1)^T,(3,2)^T,显然这两个向量是不正交的

但是一般的,对于任意矩阵,不同特征值对应的特征向量必然线性无关;特别地,对于实对称矩阵,不同特征值对应的特征向量必然正交。

·每一个线性空间都有一个基。

·对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

·矩阵非奇异(可逆)当且仅当它的行列式不为零。

·矩阵非奇异当且仅当它代表的线性变换是个自同构。

·矩阵半正定当且仅当它的每个特征值大于或等于零。

·矩阵正定当且仅当它的每个特征值都大于零。

·解线性方程组的克拉默法则。

·判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。

扩展资料:

A的一个特征值λ的代数重次是λ作为A的特征多项式的零点的次数;换句话说,若λ是一个该多项式的根,它是因子(t − λ)在特征多项式中在因式分解后中出现的次数。一个n×n矩阵有n个特征值,如果将代数重次计算在内的话,因为其特征多项式次数为n。

一个代数重次1的特征值为“单特征值”。

在关于矩阵理论的条目中,可能会遇到如下的命题:

"一个矩阵A的特征值为4,4,3,3,3,2,2,1"

表示4的代数重次为二,3的是三,2的是二,而1的是1。这样的风格因为代数重次对于矩阵理论中的很多数学证明很重要而被大量使用。

所谓“线性”,指的就是如下的数学关系:  。

其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。

合在一起,线性代数研究的就是:满足线性关系  的线性算子f都有哪几类,以及他们分别都有什么性质。

参考资料:百度百科——线性代数

夏De夭
推荐于2017-11-27 · TA获得超过3052个赞
知道小有建树答主
回答量:612
采纳率:88%
帮助的人:315万
展开全部
不是,如矩阵A=
[2 3]
[2 1],它的特征值为-1、4,对应的特征向量为(-1,1)^T,(3,2)^T,显然这两个向量是不正交的
但是一般的,对于任意矩阵,不同特征值对应的特征向量必然线性无关;特别地,对于实对称矩阵,不同特征值对应的特征向量必然正交
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
gongjiaxiang50
2015-02-11 · TA获得超过3171个赞
知道大有可为答主
回答量:2432
采纳率:50%
帮助的人:1109万
展开全部
必然正交。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Mona611
2018-11-16
知道答主
回答量:1
采纳率:0%
帮助的人:810
展开全部
实对称矩阵是的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
府焮欣0JS
2019-12-21 · TA获得超过271个赞
知道答主
回答量:1477
采纳率:10%
帮助的人:96.5万
展开全部
不是,如矩阵A=
[2 3]
[2 1],它的特征值为-1、4,对应的特征向量为(-1,1)^T,(3,2)^T,显然这两个向量是不正交的
但是一般的,对于任意矩阵,不同特征值对应的特征向量必然线性无关;特别地,对于实对称矩阵,不同特征值对应的特征向量必然正交
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式