求极限:(洛必达法则)
Lim(x→0+)lnx*ln(x+1)Lim(x→1)(1-x)tan(xπ/2)Lim(x→0)(sinx)^(x)Lim(x→0)(1+sinx)^(1/x)Lim...
Lim(x→0+) lnx*ln(x+1)
Lim(x→1) (1-x)tan(xπ/2)
Lim(x→0) (sinx)^(x)
Lim(x→0) (1+sinx)^(1/x)
Lim(x→π/2+) (tanx)^(cosx) 展开
Lim(x→1) (1-x)tan(xπ/2)
Lim(x→0) (sinx)^(x)
Lim(x→0) (1+sinx)^(1/x)
Lim(x→π/2+) (tanx)^(cosx) 展开
1个回答
展开全部
将上述表达式按如下化简,然后运用洛比达法则对分子分母求导即可,后续步骤及结果略……
Lim(x→0+) lnx*ln(x+1) = Lim(x→0+) ln(x+1) / (1/lnx)
Lim(x→1) (1-x)tan(xπ/2) = Lim(x→1) tan(xπ/2)/ (1/(1-x))
Lim(x→0) (sinx)^(x) = Lim(x→0) e^[xln(sinx)] = Lim(x→0) e^[ln(sinx)/ (1/x)]
Lim(x→0) (1+sinx)^(1/x) = Lim(x→0) e^[ (ln(1+sinx) )/ x]
Lim(x→π/2+) (tanx)^(cosx) = Lim(x→π/2+) e^[ (ln(tanx) ) /(1/cosx) ]
Lim(x→0+) lnx*ln(x+1) = Lim(x→0+) ln(x+1) / (1/lnx)
Lim(x→1) (1-x)tan(xπ/2) = Lim(x→1) tan(xπ/2)/ (1/(1-x))
Lim(x→0) (sinx)^(x) = Lim(x→0) e^[xln(sinx)] = Lim(x→0) e^[ln(sinx)/ (1/x)]
Lim(x→0) (1+sinx)^(1/x) = Lim(x→0) e^[ (ln(1+sinx) )/ x]
Lim(x→π/2+) (tanx)^(cosx) = Lim(x→π/2+) e^[ (ln(tanx) ) /(1/cosx) ]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询