
已知数列{a n }的前n项和S n 满足:S n =a(S n -a n +1)(a为常数,且a≠0,a≠1).(Ⅰ)求{a n }的
已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(a为常数,且a≠0,a≠1).(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=an2+Sn?an,若数列{bn}...
已知数列{a n }的前n项和S n 满足:S n =a(S n -a n +1)(a为常数,且a≠0,a≠1).(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 2 +S n ?a n ,若数列{b n }为等比数列,求a的值;(Ⅲ)设c n =log a a 2n-1 ,求数列{a 2n ?c n }的前n项和T n .
展开
展开全部
(I)∵S n =a(S n -a n +1) ∴S n-1 =a(S n-1 -a n-1 +1)(n≥2) 两式相减可得,S n -S n-1 =a(S n -a n +1-S n-1 +a n-1 -1)(n≥2) 即a n =a[(S n -S n-1 )-a n +a n-1 ]=a?a n-1 ∴
∵S 1 =a(s 1 -a 1 +1) ∴a 1 =a ∴数列{a n }是以a为首项以a为公比的等比数列 ∴a n =a n (II)∵S n =a(S n -a n +1) ∴S n =a×
∴b n =a n 2 +S n ?a n = a n ( a n +
∵b n 为等比数列∴b 2 2 =b 1 b 3 ∴ a 4 [ a 2 +
∵a≠0,a≠1 解可得 a=
(III)∵C n =log a a 2n-1 =2n-1,a 2n ?C n =(2n-1)?a 2n ∴T n =a 2 +3a 4 +…+(2n-1)a 2n a 2 T n =a 4 +3a 6 +…+(2n-3)a 2n +(2n-1)?a 2n+2 两式相减可得,(1-a 2 )T n =a 2 +2(a 4 +a 6 +…+a 2n )-(2n-1)?a 2n+2 = a 2 +
∴T n =
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询