如图,四边形ABCD为正方形,PD⊥平面ABCD,PD=AD,AF⊥PC于点F,FE∥CD交PD于点E.(1)证明:CF⊥平面AD
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD=AD,AF⊥PC于点F,FE∥CD交PD于点E.(1)证明:CF⊥平面ADF;(2)若AC∩BD=O,证明FO∥平...
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD=AD,AF⊥PC于点F,FE∥CD交PD于点E.(1)证明:CF⊥平面ADF;(2)若AC∩BD=O,证明FO∥平面AED.
展开
1个回答
展开全部
解答:证明:(1)由PD⊥平面ABCD,得PD⊥AD又AD⊥DC,AD∩DC=C根据线面垂直的判定定理,得AD⊥平面PDC
?又CF?面PCD,得AD⊥CF,又AF⊥CF,AF∩CF=C根据线面垂直的判定定理,得CF⊥平面ADF
(2)因为AD=PD,由(1)知,F为PC中点.∵ABCD为正方形,AC∩BD=O,∴是AC中点,连接FO,
则FO是三角形ACP的边AP的中位线,∴FO∥AP,又∵AP?面APD,FO?面APD,根据线面平行的判定定理,
∴FO∥面APD,即FO∥面AED.
?又CF?面PCD,得AD⊥CF,又AF⊥CF,AF∩CF=C根据线面垂直的判定定理,得CF⊥平面ADF
(2)因为AD=PD,由(1)知,F为PC中点.∵ABCD为正方形,AC∩BD=O,∴是AC中点,连接FO,
则FO是三角形ACP的边AP的中位线,∴FO∥AP,又∵AP?面APD,FO?面APD,根据线面平行的判定定理,
∴FO∥面APD,即FO∥面AED.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询