已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是OB、OC上的动点,(1)如果动点E、F满足BE=CF(如图1

已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是OB、OC上的动点,(1)如果动点E、F满足BE=CF(如图1):①写出所有以点E或F为顶点的全等三角形(不得... 已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是OB、OC上的动点,(1)如果动点E、F满足BE=CF(如图1):①写出所有以点E或F为顶点的全等三角形(不得添加辅助线);②证明:AE⊥BF;(2)如果动点E、F满足BE=OF(如图2),问当AE⊥BF时,点E在什么位置,并证明你的结论. 展开
 我来答
zxn雫149
2015-01-12 · 超过48用户采纳过TA的回答
知道答主
回答量:99
采纳率:0%
帮助的人:121万
展开全部
解:(1)延长AE交BF于点M.
①△ABE≌△BCF,△AOE≌△BOF,△ADE≌△BAF;
②证明:根据正方形的性质,
在△BAE和△CBF中,
AB=BC
∠ABE=∠BCF=45°
BE=CF

∴△BAE≌△CBF(SAS),
∴∠BAE=∠CBF,
根据外角性质,∠AFB=∠BCF+∠CBF=45°+∠CBF,
又∵∠FAM=45°-∠BAE,
∴∠AMF=180°-(∠FAM+∠AFM)=180°-(45°+∠CBF+45°-∠BAE)=90°,
∴AE⊥BF;

(2)当AE⊥BF时,点E在BO中点.证明如下:
延长AE交BF于点M,如图所示:
∵∠BME=∠AOE,∠BEM=∠AEO,
∴△BEM∽△AEO,
BE
AE
=
EM
EO
=
BM
AO

即AO=
AE?BM
BE
=
EO?BM
EM

∵∠MBE=∠OBF,∠BME=∠BOF,
∴△BEM∽△BFO,
BM
BO
=
BE
BF
=
EM
FO

即BO=
BM?BF
BE
=
BE?OF
EM

∵AO=BO,BE=OF,
∴BE=EO,
故当AE⊥BF时,点E在BO中点.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式